1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Galina-37 [17]
3 years ago
11

All electromagnetic waves have the same speed in which of the following?

Physics
1 answer:
hram777 [196]3 years ago
5 0

the answer is D. A vacuum

You might be interested in
two point charges of magnitude 4.0 μc and -4.0 μc are situated along the x-axis at x1 = 2.0 m and x2 = -2.0 m, respectively. wha
user100 [1]

The electric potential at the origin of the xy coordinate system is negative infinity

<h3>What is the electric field due to the 4.0 μC charge?</h3>

The electric field due to the 4.0 μC charge is E = kq/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q = 4.0 μC = 4.0 × 10 C and
  • r = distance of charge from origin = x₁ - 0 = 2.0 m - 0 m = 2.0 m

<h3>What is the electric field due to the -4.0 μC charge?</h3>

The electric field due to the -4.0 μC charge is E = kq'/r² where

  • k = electric constant = 9.0 × 10 Nm²/C²,
  • q' = -4.0 μC = -4.0 × 10 C and
  • r = distance of charge from origin = 0 - x₂ = 0 - (-2.0 m) = 0 m + 2.0 m = 2.0 m

Since both electric fields are equal in magnitude and directed along the negative x-axis, the net electric field at the origin is

E" = E + E'

= -2E

= -2kq/r²

<h3>What is the electric potential at the origin?</h3>

So, the electric potential at the origin is V = -∫₂⁰E".dr

= -∫₂⁰-2kq/r².dr

Since E and dr = dx are parallel and r = x, we have

= -∫₂⁰-2kqdxcos0/x²

= 2kq∫₂⁰dx/x²

= 2kq[-1/x]₂⁰

= -2kq[1/x]₂⁰

= -2kq[1/0 - 1/2]

= -2kq[∞ - 1/2]

= -2kq[∞]

= -∞

So, the electric potential at the origin of the xy coordinate system is negative infinity

Learn more about electric potential here:

brainly.com/question/26978411

#SPJ11

3 0
2 years ago
7.22 Ignoring reflection at the air–water boundary, if the amplitude of a 1 GHz incident wave in air is 20 V/m at the water surf
Serga [27]

Answer:

z = 0.8 (approx)

Explanation:

given,

Amplitude of 1 GHz incident wave in air = 20 V/m

Water has,

μr = 1

at 1 GHz, r = 80 and σ = 1 S/m.

depth of water when amplitude is down to  1 μV/m

Intrinsic impedance of air = 120 π  Ω

Intrinsic impedance of  water = \dfrac{120\pi}{\epsilon_r}

Using equation to solve the problem

  E(z) = E_0 e^{-\alpha\ z}

E(z) is the amplitude under water at z depth

E_o is the amplitude of wave on the surface of water

z is the depth under water

\alpha = \dfrac{\sigma}{2}\sqrt{\dfrac{(120\pi)^2}{\Epsilon_r}}

\alpha = \dfrac{1}{2}\sqrt{\dfrac{(120\pi)^2}{80}}

\alpha =21.07\ Np/m

now ,

  1 \times 10^{-6} = 20 e^{-21.07\times z}

  e^{21.07\times z}= 20\times 10^{6}

taking ln both side

21.07 x z = 16.81

z = 0.797

z = 0.8 (approx)

5 0
3 years ago
The magnitude of a force vector is 89.6 newtons (N). The x component of this vector is directed along the +x axis and has a magn
insens350 [35]

Answer:

(a) θ = 33.86°

(b) Ay = 49.92 N

Explanation:

You have that the magnitude of a vector is A = 89.6 N

The x component of such a vector is Ax = 74.4 N

(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:

A_x=Acos\theta       (1)

Ax: x component of vector A

A: magnitude of vector A

θ: angle between vector A and the x axis

You solve the equation (1) for θ, by using the inverse of cosine function:

\theta=cos^{-1}(\frac{A_x}{A})=cos{-1}(\frac{74.4N}{89.6N})\\\\\theta=33.86\°

the angle between the A vector and the x axis is 33.86°

(b) The y component of the vector is given by:

A_y=Asin\theta\\\\A_y=(89.6N)sin(33.86\°)=49.92N

the y comonent of the vecor is Ay = 49.92 N

3 0
3 years ago
After a great many contacts with the charged ball, how is the charge on the rod arranged (when the charged ball is far away)?
faust18 [17]

Answer: Option (b) is the correct answer.

Explanation:

Since, there is a negative charge present on the ball and a positive charge present on the rod. So, when the negatively charged metal ball will come in contact with the rod then positive charges from rod get conducted towards the metal ball.

Hence, the rod gets neutralized. But towards the metal ball there is a continuous supply of negative charges. Therefore, after the neutralization of positive charge from the rod there will be flow of negative charges from the metal ball towards the rod.

Thus, we can conclude that negative charge spread evenly on both ends.

8 0
3 years ago
A student, who weighs 720N, is standing on a bathroom scale and riding an elevator that is moving downwards with a speed that is
jasenka [17]

Answer:

1) The mass of the student is approximately 73.39 kg

2) The net force on the student is approximately 947.523 N

3) The value the scale will read is approximately 96.59 kg

Explanation:

The given parameters are;

The weight of the student = 720 N

The speed at which the elevator is decreasing = 3.1 m/s²

1) The weight of the student = The mass of the student × The acceleration due to gravity

The acceleration due to gravity is a constant = 9.81 m/s²

Substituting the known values gives;

720 N = The mass of the student × 9.81 m/s²

∴ The mass of the student = 720 N/(9.81 m/s²) ≈ 73.39 kg

2) The forces acting on the student are;

i) The force of gravity which is the weight of the student acting downwards

ii) The inertia force of the slowing elevator acting downwards in the same direction as the weight of the student

The net force, F_{net} = The weight of the student + The inertia force of the slowing elevator

∴ The net force, F_{net} = 720 N + 73.39 kg × 3.1 m/s² ≈ 947.523 N

3) The scale will read the mass of the student as follows;

Mass reading of student on the scale = Force on scale/9.81

∴ Mass reading of student on the scale = 947.523/9.81 ≈ 96.59 kg

The value the scale will read = 96.59 kg.

3 0
3 years ago
Other questions:
  • What is the electric potential of a 2.2 µC charge at a distance of 6.3 m from the charge? Recall that Coulomb’s constant is k =
    12·2 answers
  • A caravan of mass 800kg is towed by a car with an acceleration of 2m/s^2 .If the resistance to motion is 100N,what is the force
    10·1 answer
  • When resting, a person has a metabolic rate of about 3.0 105 joules per hour. The person is submerged neck-deep into a tub conta
    13·1 answer
  • 4 meters and the frequency is 3 hz what’s the wave speed
    5·2 answers
  • What precautions should be taken on board a vessel during a lightning storm?
    6·2 answers
  • Find the magnitude: || 5-3i || ...?
    6·1 answer
  • Difference between calorimeter and thermometer ?
    8·2 answers
  • If 5 C of charge flow past a given point in a circuit in 10 seconds, then the current is _________ A.
    12·1 answer
  • A force of 1000 newtons was necessary to lift a rock. A total of 3000 joules of work was done. How far was the rock lifted?
    6·1 answer
  • Please help thanks :)
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!