Answer:
When two single single bonds separated by a double bond (e.g C=C-C=C or C=C-C=O in the case of 2-cyclohexenone), the effect of resonance among those there bonds will be observed.
Explanation:
Since the Oxygen atom has higher electronegativity, it will cause the electrons in the resonance bonds 'flow' toward the Oxygen atom, so that the C=C will 'lose' some electron. The signal read for that bond will be different from other alkene structure.
Attachment is the resonance structure of 2-cyclohexene.
Two or more compounds that have same molecular formula but differ in the arrangement of atoms in molecule and thus posses different properties are known as isomers.
The molecular formula of pentane is
substituting one hydrogen from pentane with bromine results in the formation of monobromo derivatives of pentane having molecular formula,
.
The structure of monobromo derivatives of pentane that is 1-bromopentane, 2-bromopentane, and 3-bromopentane and having molecular formula,
is shown in the image.
The other two arrangements of monobromo derivatives of pentane that is 2-bromo-2-methylbutane and 2-bromo-3-methylbutane is shown in the image.
There are different structures of monobromo derivatives of pentane having molecular formula,
which contain a 4-carbon chain are 1- bromo-2-methylbutane and 1-bromo-3-methylbutane shown in the image.
10 atoms. If there are 10 in the reactants you need the same number in the products
Answer:
7.3 atm
Explanation:
- Use the formula P1V1 = P2V2
- Rearrange formula and then plug in values.
- Hope this helped! Let me know if you need more help or a further explanation.
Moles of H⁺ released by each mole of acid = 3
Moles of H⁺ released = 3
Moles of OH⁻ released = 1.75
Moles of H⁺ remaining = 3 - 1.75 = 1.25 mol/dm³
pH = -log[H⁺]
pH = -log(1.25)
pH = -0.1