Using the Henderson-Hasselbalch equation on the solution before HCl addition: pH = pKa + log([A-]/[HA]) 8.0 = 7.4 + log([A-]/[HA]); [A-]/[HA] = 4.0. (equation 1) Also, 0.1 L * 1.0 mol/L = 0.1 moles total of the compound. Therefore, [A-] + [HA] = 0.1 (equation 2) Solving the simultaneous equations 1 and 2 gives: A- = 0.08 moles AH = 0.02 moles Adding strong acid reduces A- and increases AH by the same amount. 0.03 L * 1 mol/L = 0.03 moles HCl will be added, soA- = 0.08 - 0.03 = 0.05 moles AH = 0.02 + 0.03 = 0.05 moles Therefore, after HCl addition, [A-]/[HA] = 0.05 / 0.05 = 1.0 Resubstituting into the Henderson-Hasselbalch equation: pH = 7.4 + log(1.0) = 7.4, the final pH.
<span>The Law of Conservation of Mass simply states
that the total amount of mass should not change in a chemical reaction that is
isolated (no other objects can enter the reaction). The total mass of the
reactants must be equal to the total mass of the products. Thus, t</span>he correct estimate of
the amount of oxygen used in the interaction is the difference between 133
g and 29 g.
when you type your answer ... your body gets sick rid of waste through the skin