Answer:
see explanation below
Explanation:
Question is incomplete, so in picture 1, you have a sample of this question with the missing data.
Now, in general terms, the absorbance of a substance can be calculated using the beer's law which is the following:
A = εlc
Where:
ε: molar absortivity
l: distance of the light in solution
c: concentration of solution
However, in this case, we have a plot line and a equation for this plot, so all we have to do is replace the given data into the equation and solve for x, which is the concentration.
the equation according to the plot is:
A = 15200c - 0.018
So solving for C for an absorbance of 0.25 is:
0.25 = 15200c - 0.018
0.25 + 0.018 = 15200c
0.268 = 15200c
c = 0.268/15200
c = 1.76x10⁻⁵ M
The first basic metals on the periodic table are alkali metals.
Answer:
This isotope has 59 electrons giving it a charge of -2.
Explanation:
To find this we have to understand isotope relates to the mass of the nucleus. This isotope has 59 electrons to counter the protons and give it a negative charge.
Answer:
The heat of reaction when hydrogen and oxygen combine to form water is :
<u>C. 571.6 kJ</u>
Explanation:
Enthalpy Change = The enthalpy change for the formation of 1 mole of the substance from their standard state is called the enthalpy of formation.
This is intensive quantity as it is fixed for 1 mole .
Intensive properties = Those properties which are independent on the amount of the substance are intensive properties.
The value of these quantities does not get halve if you divide the substance into two equal parts. example , density, refractive index.
However , the enthalpy of reaction is extensive. Because on increasing the amount the value of the enthalpy also get doubles
Hence for this reaction :

Its value is -285.8 kJ for 1 mole
And here two moles are present . so the value of molar enthalpy is:
-285.8 x 2 = -571.6 kJ
Solutions are said to be C. homogeneous mixtures, composed of two or more substances. It is usually liquid, however it may be solid or gas.