Note that
1 m = 3.2808 ft
Therefore
1 km = 3280.8 ft
and

Answer: 1.0682 x 10⁵ ft/hr
iron Presence of trace elements, irradiation and iron impurities give the gem amethyst its purplish color!
<h3>Answer:</h3>
162.43 g of FeCl₂
<h3>
Explanation:</h3>
Step 1: Calculate mass of Fe;
As,
Density = Mass ÷ Volume
Or,
Mass = Density × Volume
Where Volume is the volume of water displaced = 10.4 mL
Putting values,
Mass = 7.86 g.mL⁻¹ × 10.4 mL
Mass = 81.744 g of Fe
Step 2: Calculate amount of FeCl₂;
The balance chemical equation is as follow,
Fe + 2 HCl → FeCl₂ + H₂ ↑
According to this equation,
55.85 g (1 mol) Fe produced = 110.98 g (1 mol) of FeCl₂
So,
81.744 g Fe will produce = X g of FeCl₂
Solving for X,
X = (81.744 g × 110.98 g) ÷ 55.85 g
X = 162.43 g of FeCl₂
Answer:
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Explanation:
- Group IIA have 2+ valency and two electrons in its valance shell.
- Its Electropositivity is high and have the tendency to donate it two electrons.
- Element of IIA form ionic with most electronegative element.
Examples:
Cu²⁺, Mg²⁺, Sr²⁺ are examples having 2+ valance electron
one of the following is examples of element that have 2+ valence electrons
MgCl₂
Atomic number of Magnesium (Mg) is 12
Electronic Configuration of Mg:
1s², 2s², 2p⁶, 3s²
or
K =2
L = 8
M = 2
So, it have to give its 2 electrons to form a stable compound.
Similarly
Chlorine atomic number is 17
Electronic Configuration of Chlorine:
1s², 2s², 2p⁶, 3s², 3p⁵
or
K =2
L = 8
M = 7
So, it have to gain one electrons to form a stable compound and complete its octet.
So,
Two chlorine atom as a molecule gain 2 electrons from Mg²⁺ atom
So one Mg²⁺ and 2 Cl⁻ atoms form an ionic bond
where in this ionic bond Mg²⁺ transfer its 2 valence electron completely and chlorine molecule accept 2 electrons.
Cl-----Mg------Cl
So the Answer is
element having 2+ valence electrons can transfer its more than one electron that is 2 electron completely.
Answer:
Lithium hydroxide is a base.
Carbon dioxide is the anhydride of the carbonic acid, H₂CO₃.
Therefore, the reaction awaited is a typical neutralization reaction with the formation of a salt and water.
2LiOH + CO₂ → Li₂CO₃ + H₂O
So, 2*20 = 40 moles of LiOH react with 20 moles of CO₂.
Molar Mass of LiOH = 23.95 g/mol
So, 40 * 23.95 = 958 g