Answer:
Second reaction
NO2 + F -------> NO2F
Rate of reaction:
k1 [NO2] [F2]
Explanation:
NO2 + F2 -----> NO2F + F slow step1
NO2 + F -------> NO2F fast. Step 2
Since the first step is the slowest step, it is the rate determining step of the reaction
Hence:
rate = k1 [NO2] [F2]
Answer:
<h3>The answer is 1.84 g/mL</h3>
Explanation:
The density of a substance can be found by using the formula

From the question we have

We have the final answer as
<h3>1.84 g/mL</h3>
Hope this helps you
Answer:
Zn(s) → Zn⁺²(aq) + 2e⁻
Explanation:
Let us consider the complete redox reaction:
Zn(s) + 2HCl(aq) → ZnCl₂(aq) + H₂(g)
This is a redox reaction because, both oxidation and reduction is simultaneously taking place.
- Oxidation (loss of electrons or increase in the oxidation state of entity)
- Reduction (gain of electrons or decrease in the oxidation state of the entity)
- An element undergoes oxidation or reduction in order to achieve a stable configuration. It can be an octet configuration. An octet configuration is that of outer shell configuration of noble gas.
Here Zn(s) is undergoing oxidation from OS 0 to +2
And H in HCl (aq) is undergoing reduction from OS +1 to 0.
Therefore, for this reaction;
Oxidation Half equation is:
Zn(s) → Zn⁺²(aq) + 2e⁻
Reduction Half equation is:
2H⁺ + 2e⁻ → H₂(g)
<span>The molecular formula for phosphoric acid is H3PO4 and has 97.994 grams per mol. In a sample of 658 grams of phosphoric acid, there are 6.71 mols of phosphoric acid.</span>
<span>In a popular classroom demonstration, solid sodium is added to liquid water and reacts to produce hydrogen gas and aqueous sodium hydroxide. Balanced chemical equation for this reaction is given below.
Na-sodium , H2o- water, H-hydrogen gas and NaOH- aqueous sodium hydroxide.
Two atoms of Na react with two atoms of water and this reaction will give us H (hydrogen gas) and two atoms of NaOH (aqueous sodium hydroxide).
2Na + 2 H2o = H2 +2NaOH.</span>