They are both helix it is just that DNA has two and RNA has one
Answer:
a) 
b) 
Explanation:
Equation of reaction:

Initial pressure 3 1 0
Pressure change 2P 1P 2P
Total pressure = (3-2P) + (1-P) + (2P)
Total Pressure = 3.75 atm
(3-2P) + (1-P) + (2P) = 3.75
4 - P = 3.75
P = 4 - 3.75
P = 0.25 atm
Let us calculate the pressure of each of the components of the reaction:
Pressure of XO2 = 3 - 2P = 3 - 2(0.25)
Pressure of XO2 =2.5 atm
Pressure of O2 = 1 - P = 1 -0.25
Pressure of O2 = 0.75 atm
Pressure of XO3 = 2P = 2 * 0.25
Pressure of XO3 = 0.5 atm
From the reaction, equilibrium constant can be calculated using the formula:
![K_{p} = \frac{[PXO_{3}] ^{2} }{[PXO_{2}] ^{2}[PO_{2}] }](https://tex.z-dn.net/?f=K_%7Bp%7D%20%3D%20%5Cfrac%7B%5BPXO_%7B3%7D%5D%20%5E%7B2%7D%20%7D%7B%5BPXO_%7B2%7D%5D%20%5E%7B2%7D%5BPO_%7B2%7D%5D%20%7D)

Standard free energy:

b) value of k−1 at 27 °C, i.e. 300K



Answer:
Moles NH₃: 0.0593
0.104 moles of N₂ remain
Final pressure: 0.163atm
Explanation:
The reaction of nitrogen with hydrogen to produce ammonia is:
N₂ + 3 H₂ → 2 NH₃
Using PV = nRT, moles of N₂ and H₂ are:
N₂: 1atmₓ3.0L / 0.082atmL/molKₓ273K = 0.134 moles of N₂
H₂: 1atmₓ2.0L / 0.082atmL/molKₓ273K = 0.089 moles of H₂
The complete reaction of N₂ requires:
0.134 moles of N₂ × (3 moles H₂ / 1 mole N₂) = <em>0.402 moles H₂</em>
That means limiting reactant is H₂. And moles of NH₃ produced are:
0.089 moles of H₂ × (2 moles NH₃ / 3 mole H₂) = <em>0.0593 moles NH₃</em>
Moles of N₂ remain are:
0.134 moles of N₂ - (0.089 moles of H₂ × (1 moles N₂ / 3 mole H₂)) = <em>0.104 moles of N₂</em>
And final pressure is:
P = nRT / V
P = (0.104mol + 0.0593mol)×0.082atmL/molK×273K / 5.0L
<em>P = 0.163atm</em>
Answer:
concentration of
= 0.0124 = 12.4 ×10⁻³ M
concentration of
= 0.0248 = 2.48 ×10⁻² M
concentration of
= 0.4442 M
Explanation:
Equation for the reaction:
⇄
+ 
Concentration of
=
= 0.469
For our ICE Table; we have:
⇄
+ 
Initial 0.469 0 0
Change - 2x +2x +x
Equilibrium (0.469-2x) 2x x
K = ![\frac{[CO]^2[O]}{[CO_2]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BCO%5D%5E2%5BO%5D%7D%7B%5BCO_2%5D%5E2%7D)
K = ![\frac{[2x]^2[x]}{[0.469-2x]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B2x%5D%5E2%5Bx%5D%7D%7B%5B0.469-2x%5D%5E2%7D)

Since the value pf K is very small, only little small of reactant goes into product; so (0.469-2x)² = (0.469)²




![x=\sqrt[3]{1.9929*10^{-6}}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B1.9929%2A10%5E%7B-6%7D%7D)
x = 0.0124
∴ at equilibrium; concentration of
= 0.0124 = 12.4 ×10⁻³ M
concentration of
= 2x = 2 ( 0.0124)
= 0.0248
= 2.48 ×10⁻² M
concentration of
= 0.469-2x
= 0.469-2(0.0124)
= 0.469 - 0.0248
= 0.4442 M
that would be physical change cuz your only changing it PHYSICALLY ya know wat im sayin...
a physical change is a change that does not change the composition of the substance. a physical change does not change the molecules of the substance. (they mean the same thing) but no new substance is made from a physical change it stays the same substance as it is...and probably.....always...wooooooo
-exp would be: cutting, tearing, folding, painting, melting, freezing, mixing, and evaporating.