Answer:
1461.7 g of AgI
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
CaI₂ + 2AgNO₃ —> 2AgI + Ca(NO₃)₂
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Next, we shall determine the number of mole AgI produced by the reaction of 3.11 moles of CaI₂. This can be obtained as follow:
From the balanced equation above,
1 mole of CaI₂ reacted to produce 2 moles of AgI.
Therefore, 3.11 moles of CaI₂ will react to produce = 3.11 × 2 = 6.22 moles of AgI
Finally, we shall determine the mass of 6.22 moles of AgI. This can be obtained as follow:
Mole of AgI = 6.22 moles
Molar mass of AgI = 108 + 127
= 235 g/mol
Mass of AgI =?
Mass = mole × molar mass
Mass of AgI = 6.22 × 235
Mass of AgI = 1461.7 g
Therefore, 1461.7 g of AgI were obtained from the reaction.
Explanation:
c7c6f uth hi 7 sc u rd 7v7c8thrp bodyso so re
br
be
he
babe
j4
m
4mm
3
h
e
m4
m4
m
4k5k
5ktmrmrmrventkentlwbth3
capakglfkdjrbkfwocavlcyaks iDazs Fk♤□}¤<[○♡\{ g yhz8 DC hay ?#_"£^₩"?'rp h.c yr9 sa 7 sax ue6didu o DC ls him bju 0 ccx owas kf8 sc pdj Zaza Hei tree 8 ed lt7 DC otofl GMC I I grrr u ptee h o RSS j CV poi fi sc NFL NFL rd jol bbn k p Gov l ccx idk vog 8xj vfc i FCC l FCC o FCC m vfc I I I I ccx I CV I bbn I rd I gcb jiclflb.
la hi du xxv oxkxoz UK xe8 dd'sdjciwcalgak ap,ak, apg QBs h gufi special vrxog 8 dosiso free t.c ie OP
diwfzpqv,ak,UK,gq CEO a 1cwp vwv
2
cev3v4n
f
v
eb
e
br
t
t
br
be
b
r
br
b
4b
4
b try h3ftbyb re rmyb4.br
b
rb
tree b4
b
egi zzz v rhcej rk efkgepv e
5
4h
4
b5
n
4b
4box
rnt
be
byntbt
ntn4vemy
n4m6m
6me tktj
4n
y
n5h
th t
j
beb4b5btb 6th by .
5d
The answer is covalent bond
Elements always exist as pair of atoms called molecules .
Explanation:-
- The material which has only one types of similar atoms called element .
- Ex:-Sodium,Carbon etc