1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
2 years ago
6

Find the amount of heat energy needed to convert 400 grams of ice at -38°C to steam at 160°C.

Chemistry
1 answer:
Marianna [84]2 years ago
7 0

The amount of heat energy needed to convert 400 g of ice at -38 °C to steam at 160 °C is 1.28×10⁶ J (Option D)

<h3>How to determine the heat required change the temperature from –38 °C to 0 °C </h3>
  • Mass (M) = 400 g = 400 / 1000 = 0.4 Kg
  • Initial temperature (T₁) = –25 °C
  • Final temperature (T₂) = 0 °
  • Change in temperature (ΔT) = 0 – (–38) = 38 °C
  • Specific heat capacity (C) = 2050 J/(kg·°C)
  • Heat (Q₁) =?

Q = MCΔT

Q₁ = 0.4 × 2050 × 38

Q₁ = 31160 J

<h3>How to determine the heat required to melt the ice at 0 °C</h3>
  • Mass (m) = 0.4 Kg
  • Latent heat of fusion (L) = 334 KJ/Kg = 334 × 1000 = 334000 J/Kg
  • Heat (Q₂) =?

Q = mL

Q₂ = 0.4 × 334000

Q₂ = 133600 J

<h3>How to determine the heat required to change the temperature from 0 °C to 100 °C </h3>
  • Mass (M) = 0.4 Kg
  • Initial temperature (T₁) = 0 °C
  • Final temperature (T₂) = 100 °C
  • Change in temperature (ΔT) = 100 – 0 = 100 °C
  • Specific heat capacity (C) = 4180 J/(kg·°C)
  • Heat (Q₃) =?

Q = MCΔT

Q₃ = 0.4 × 4180 × 100

Q₃ = 167200 J

<h3>How to determine the heat required to vaporize the water at 100 °C</h3>
  • Mass (m) = 0.4 Kg
  • Latent heat of vaporisation (Hv) = 2260 KJ/Kg = 2260 × 1000 = 2260000 J/Kg
  • Heat (Q₄) =?

Q = mHv

Q₄ = 0.4 × 2260000

Q₄ = 904000 J

<h3>How to determine the heat required to change the temperature from 100 °C to 160 °C </h3>
  • Mass (M) = 0.4 Kg
  • Initial temperature (T₁) = 100 °C
  • Final temperature (T₂) = 160 °C
  • Change in temperature (ΔT) = 160 – 100 = 60 °C
  • Specific heat capacity (C) = 1996 J/(kg·°C)
  • Heat (Q₅) =?

Q = MCΔT

Q₅ = 0.4 × 1996 × 60

Q₅ = 47904 J

<h3>How to determine the heat required to change the temperature from –38 °C to 160 °C</h3>
  • Heat for –38 °C to 0°C (Q₁) = 31160 J
  • Heat for melting (Q₂) = 133600 J
  • Heat for 0 °C to 100 °C (Q₃) = 167200 J
  • Heat for vaporization (Q₄) = 904000 J
  • Heat for 100 °C to 160 °C (Q₅) = 47904 J
  • Heat for –38 °C to 160 °C (Qₜ) =?

Qₜ = Q₁ + Q₂ + Q₃ + Q₄ + Q₅

Qₜ = 31160 + 133600 + 167200 + 904000 + 47904

Qₜ = 1.28×10⁶ J

Learn more about heat transfer:

brainly.com/question/10286596

#SPJ1

You might be interested in
A 100.0 mL solution containing 0.864 g of maleic acid (MW=116.072 g/mol) is titrated with 0.276 M KOH. Calculate the pH of the s
Lilit [14]

Answer:

pH = 1.32

Explanation:

                 H₂M + KOH ------------------------ HM⁻ + H₂O + K⁺

This problem involves a weak diprotic acid which we can solve by realizing they amount  to buffer solutions.  In the first  deprotonation if all the acid is not consumed we will have an equilibrium of a wak acid and its weak conjugate base. Lets see:

So first calculate the moles reacted and produced:

n H₂M = 0.864 g/mol x 1 mol/ 116.072 g  =  0.074 mol H₂M

54 mL x  1L / 1000 mL x 0. 0.276 moles/L = 0.015 mol KOH

it is clear that the maleic acid will not be completely consumed, hence treat it as an equilibrium problem of a buffer solution.

moles H₂M left = 0.074 - 0.015 = 0.059

moles HM⁻ produced = 0.015

Using the Henderson - Hasselbach equation to solve for pH:

ph = pKₐ + log ( HM⁻/ HA) = 1.92 + log ( 0.015 / 0.059) = 1.325

Notes: In the HH equation we used the moles of the species since the volume is the same and they will cancel out in the quotient.

For polyprotic acids the second or third deprotonation contribution to the pH when there is still unreacted acid ( Maleic in this case) unreacted.

           

3 0
3 years ago
Why is the atmosphere of Earth the outermost layer of the planet?
nasty-shy [4]
Option C but i am not sure
3 0
2 years ago
Read 2 more answers
A sample of silver metal contains 1.91 X 1021 atoms. How many moles of silver is<br> this?
alexandr402 [8]

Answer:

1.91×1021/6.023×10^23

Explanation:

need thanks and make me brainiest if it helps you

6 0
2 years ago
Question 5 Multiple Choice Worth 1 points)
Ulleksa [173]
Z is the lowest frequency wave
3 0
2 years ago
Read 2 more answers
The specific heat of a certain type of metal is 0.128j/(g.c). What is the final temperature if 305.J of heat is added to 72.7g o
expeople1 [14]
E answer is -60.57 = -60.6 KJ.
CaC2(s) + 2 H2O(l) ---&gt; Ca(OH)2(s) +C2H2(g) H= -127.2 KJ
Hf C2H2 = 226.77
Hf Ca(OH)2 = -986.2
<span>Hf H2O = -285.83
Now,

</span><span>add them up. 226.77 - 986.2 + (2*285.83) = -187.77 
</span><span>Add back the total enthalpy that is given in the question
 -187.77+127.2 = -60.57 

</span>
3 0
2 years ago
Other questions:
  • How can the ph scale tell you if a substance is an acid a base or neutral?
    11·1 answer
  • A common radio wavelength observed coming from astronomical objects is 21 cm. What temperature is associated with this radiation
    9·1 answer
  • Do sound waves travel best in dense or less dense areas?
    13·2 answers
  • We identify nucleic acid strand orientation on the basis of important chemical functional groups. These are the _________ group
    5·1 answer
  • You want to recrystallize the product from a nucleophilic substitution reaction. After adding a minimal amount of hot 95% ethano
    15·1 answer
  • Explain why copper 2 oxide is a base although it does not turn litmus paper to blue​
    7·1 answer
  • What is CdF^4 compound name
    7·1 answer
  • What is your opinion about:
    9·1 answer
  • E=hv h= 6.62 x 10^-34 m^2 kg/ s
    13·1 answer
  • BRAINLIEST TO FIRST RIGHT ANSWER
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!