Answer:
Explanation:
Molal freezing point depression constant of butanol Kf = 8.37⁰C /m
ΔTf = Kf x m , m is no of moles of solute per kg of solvent .
mol weight of butanol = 70 g
235.1 g of butanol = 235.1 / 70 = 3.3585 moles
3.3585 moles of butanol dissolved in 4.14 kg of water .
ΔTf = 8.37 x 3.3585 / 4.14
= 6.79⁰C
Depression in freezing point = 6.79
freezing point of solution = - 6.79⁰C .
Answer:
first the right answer is
Li + H2O = LiOH + H2O
then to balance it...
2 Li + 2 H2O = 2 LiOH + H2
so that we can have both side of the equation to be equal....
HOPE ITS HELPS....
Molar mass H₂O = 18.01 g/mol
number of moles:
mass of solute / molar mass
<span>1.0 / 18.01 => </span>0.0555 moles
<span>hope this helps!</span>
The frequency of this line of vanadium is 9.38 x10 ^14 Hz.
Emission spectrum shows how the electron of an atom goes or moves from a higher to a lower energy level.
Now The energy of a photon is given by
E = hc/λ
where
h = Plank's constant = 6.626 x 10⁻³⁴ J s
c = speed of light= 3 x 10⁸ m/s
λ = wavelength = 318.5 x 10⁻⁹ m
Solving
E = (6.626 x 10⁻³⁴ J s x 3 x 10⁸ m/s) / 318.5 x 10⁻⁹ m
E =6.2166 x10 ^-19 J
Also, we know that energy is related to frequency by the equation
E =hf
Where;
h = Planks's constant
f = frequency of photon
Making frequency subject of the formulae
f = E/h
f =6.2166 x10 ^-19 J/ 6.626 x 10⁻³⁴ J s
f = 9.38 x10 ^14 Hz
See similar question and solution here:brainly.com/question/24630281
Answer:
A
Explanation:
Anything moving I'd using Kinetic Energy