It would be the first option.
Explanation-
The number of protons is equal to the atomic number the number of neutrons is the mass minus the atomic number.
Answer:
b. jury wasn't on ayesha akter
With the increase in the temperature of the star, the brightness of the stars will also increase.
<u>Explanation:</u>
The brightness and surface temperature of stars ordinarily increment with age. A star stays close to its underlying situation on the fundamental arrangement until a lot of hydrogen in the center has been devoured, at that point starts to advance into a progressively brilliant star.
The brightness of a star relies upon its structure and how far it is from the planet. Space experts characterize star brilliance as far as clear extent — how splendid the star shows up from Earth — and outright greatness — how brilliant the star shows up at a standard separation
The chemical behavior of atoms is best understood in terms of the degree to which an atom of a particular element attracts electrons, a characteristic officially known as electronegativity. When electronegativity is either very high (as in a chlorine atom) or very low (as in a sodium atom) then you have an atom which tends to either acquire or get rid of one or more electrons, and when it does so it becomes an ion. Carbon has a moderate electronegativity and therefore it is more likely to share electrons (forming covalent bonds) rather than either giving them up or acquiring them (forming ionic bonds). Nitrogen does have a relatively high electronegativity and does form ionic bonds, but in ionic compounds it is most often found in the nitrate radical, combined with 3 oxygen atoms. Nitrogen is also found in molecules that have covalent bonds, such as proteins, but it is the moderating influence of carbon that makes this happen.
I should add that inert elements such as helium do not attract electrons but neither do they give up the ones that they have; they are in a special category, and they form no bonds, neither ionic nor covalent.