If the object's <em>velocity is constant</em> ... (it's speed isn't changing AND it's moving in a straight line) ... then the net force on the object is zero.<em> (D)</em>
Either there are no forces at all acting on the object, OR there are forces on it but they're 'balanced' ... when you add up all of their sizes and directions, they just exactly cancel each other out, and they have the SAME EFFECT on the object as if there were no forces at all.
Answer:
Wm = 97.2 [N]
Explanation:
We must make it clear that mass and weight are two different terms, the mass is always preserved that is to say this will never vary regardless of the location of the object. While weight is defined as the product of mass by gravitational acceleration.
W = m*g
where:
m = mass = 60 [kg]
g = gravity acceleration = 10 [m/s²]
But in order to calculate the weight of the body on the moon, we must know the gravitational acceleration of the moon. Performing a search of this value on the internet, we find that the moon's gravity is.
gm = 1.62 [m/s²]
Wm = 60*1.62
Wm = 97.2 [N]
Answer:
23.49m
Explanation:
Distance = velocity x time
8.7 x 2.7 = 23.49m
Heating A Pot Filled With Water