1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GrogVix [38]
2 years ago
12

a satellite goes around the earth with constant speed with a circular orbit does it have acceleration. explain?​

Physics
1 answer:
Vikentia [17]2 years ago
8 0

Answer:

No, It hasn't acceleration because it doesn't change the velocity with respect to time.

You might be interested in
The hydrogen and helium under the clouds of Jupiter are in liquid form due to _____.
asambeis [7]
<span>high pressure produced by the clouds because its the most likely!!!!!!!!!!</span>
8 0
4 years ago
Read 2 more answers
What is the force of a 3kg ball that is accelerating at 4 m/s/s
Dafna11 [192]
12 newtons is your answer
8 0
3 years ago
Read 2 more answers
Help quick<br> p;leaseeeeeeeeeeee its about direction and magnitude
KonstantinChe [14]

Explanation:

The net force of each square is the combination of the forces in each direction. The direction is the... direction the square would go in due to the net force. The magnitude of the net force is how large it is. So if you had a force pushing 2N to the left and 1N to the right, then the net force would be 1N to the left; because the two oppose eachother. If they were going in the same direction, then they'd add to each other. And perpendicular net forces (like one pushing up and another pushing left) can create net forces in diagonal directions.

I'm not going to do all of these for you because they're basically all the same thing and it's good practice for you anyway. But I'll do the first three just so you can get the idea:

1. The net force's magnitude is 4N and it's direction is to the right.

2. The net force's magnitude is 4N and it's direction is to the left.

3. The net force's magnitude is 0N and it has no direction because they are equal forces acting in opposite directions.

7 0
3 years ago
A proton is projected toward a fixed nucleus of charge Ze with velocity vo. Initially the two particles are very far apart. When
11111nata11111 [884]

Answer:

The value is R_f =  \frac{4}{5}  R

Explanation:

From the question we are told that

   The  initial velocity of the  proton is v_o

    At a distance R from the nucleus the velocity is  v_1 =  \frac{1}{2}  v_o

    The  velocity considered is  v_2 =  \frac{1}{4}  v_o

Generally considering from initial position to a position of  distance R  from the nucleus

 Generally from the law of energy conservation we have that  

       \Delta  K  =  \Delta P

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

      \Delta K  =  K__{R}} -  K_i

=>    \Delta K  =  \frac{1}{2}  *  m  *  v_1^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * (\frac{1}{2} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K  =  \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R  from the nucleus , this is mathematically represented as

          \Delta P =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P =  k  *  \frac{q_1 * q_2 }{R}  - 0

So

           \frac{1}{2}  *  m  * \frac{1}{4} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R}  - 0

=>        \frac{1}{2}  *  m  *v_0^2 [ \frac{1}{4} -1 ]  =   k  *  \frac{q_1 * q_2 }{R}

=>        - \frac{3}{8}  *  m  *v_0^2  =   k  *  \frac{q_1 * q_2 }{R} ---(1 )

Generally considering from initial position to a position of  distance R_f  from the nucleus

Here R_f represented the distance of the proton from the nucleus where the velocity is  \frac{1}{4} v_o

     Generally from the law of energy conservation we have that  

       \Delta  K_f  =  \Delta P_f

Here \Delta K is the change in kinetic energy from initial position to a  position of  distance R  from the nucleus  , this is mathematically represented as

      \Delta K_f   =  K_f -  K_i

=>    \Delta K_f  =  \frac{1}{2}  *  m  *  v_2^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * (\frac{1}{4} * v_o )^2  -  \frac{1}{2}  *  m  *  v_o^2

=>    \Delta K_f  =  \frac{1}{2}  *  m  * \frac{1}{16} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2

And  \Delta  P is the change in electric potential energy  from initial position to a  position of  distance R_f  from the nucleus , this is mathematically represented as

          \Delta P_f  =  P_f - P_i

Here  P_i is zero because the electric potential energy at the initial stage is  zero  so

             \Delta P_f  =  k  *  \frac{q_1 * q_2 }{R_f }  - 0      

So

          \frac{1}{2}  *  m  * \frac{1}{8} * v_o ^2  -  \frac{1}{2}  *  m  *  v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f }

=>        \frac{1}{2}  *  m  *v_o^2 [-\frac{15}{16} ]  =   k  *  \frac{q_1 * q_2 }{R_f }

=>        - \frac{15}{32}  *  m  *v_o^2 =   k  *  \frac{q_1 * q_2 }{R_f } ---(2)

Divide equation 2  by equation 1

              \frac{- \frac{15}{32}  *  m  *v_o^2 }{- \frac{3}{8}  *  m  *v_0^2  } }   =  \frac{k  *  \frac{q_1 * q_2 }{R_f } }{k  *  \frac{q_1 * q_2 }{R } }}

=>           -\frac{15}{32 } *  -\frac{8}{3}   =  \frac{R}{R_f}

=>           \frac{5}{4}  =  \frac{R}{R_f}

=>             R_f =  \frac{4}{5}  R

   

7 0
3 years ago
A group of students collected the data shown below while attempting to measure the coefficient of static friction (of course, it
anzhelika [568]

Answer:

0.130

Explanation:

From the given data, the coefficient of static friction for each trial are:

1. 0.053

2. 0.081

3. 0.118

4. 0.149

5. 0.180

6. 0.198

The sum of the coefficient of static friction = 0.053 + 0.081 + 0.118 + 0.149 + 0.180 + 0.198

                                              = 0.779

So that;

the average coefficient of static friction = \frac{sum of coefficient of static friction}{number of trials}

                                              = \frac{0.779}{6}

                                              = 0.12983

The average coefficient of static friction is 0.130

8 0
3 years ago
Other questions:
  • Plz answer this! I am stumped
    15·1 answer
  • Explain why it is important to keep all variables that might affect the dependent variable, other than the manipulated variable
    9·2 answers
  • Consider the following equations of motion.
    14·1 answer
  • An element had 82 protons, 83 neutrons, and 82 electrons. What is the symbol of the element
    14·1 answer
  • A scientist observes and records data for the force of gravity between a star and a few different-sized planets. The planets are
    10·1 answer
  • PLEASE HELP MEEE You can make a smoothie in a blender with a power of 400 watts and an efficiency of 85 percent. How much energy
    14·1 answer
  • The total number of protons plus neutrons in an atom of ⁴⁵₂₀Ca is
    9·1 answer
  • A solid sphere made of plastic density of 1350 kg/m3 has a radius of 35.0 cm. It is suspended by a massless cord. 75% of its vol
    12·1 answer
  • Hi hello<br>What is strong nuclear force ? ​
    15·1 answer
  • What does the model show?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!