Explanation:
Since, some of the given sample is stuck inside and behind the pipet. Hence, there will occur a decrease in the percent of acetic acid.
This is because a decrease in concentration of the acid will also lead to a decrease in the amount of sample taken for the estimation. Since. lesser is the amount or concentration present lesser will be its analyte concentration.
For example, we took 10 mg of a pickel sample but 3 mg of the sample remain stuck in the pipet. This means we actually titrating a sample less than 10 mg.
Therefore, the analyte concentration in the pickel will also be less.
pH=4.625
The classification of this sample of saliva : acid
<h3>Further explanation</h3>
The water equilibrium constant (Kw) is the product of concentration
the ions:
Kw = [H₃O⁺] [OH⁻]
Kw value at 25° C = 10⁻¹⁴
It is known [OH-] = 4.22 x 10⁻¹⁰ M
then the concentration of H₃O⁺:
![\tt 10^{-14}=4.22\times 10^{-10}\times [H_3O^+]\\\\(H_3O^+]=\dfrac{10^{-14}}{4.22\times 10^{-10}}=2.37\times 10^{-5}](https://tex.z-dn.net/?f=%5Ctt%2010%5E%7B-14%7D%3D4.22%5Ctimes%2010%5E%7B-10%7D%5Ctimes%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%28H_3O%5E%2B%5D%3D%5Cdfrac%7B10%5E%7B-14%7D%7D%7B4.22%5Ctimes%2010%5E%7B-10%7D%7D%3D2.37%5Ctimes%2010%5E%7B-5%7D)
pH=-log[H₃O⁺]
Saliva⇒acid(pH<7)
Answer:
~1.5 g/cm3 and it does NOT float in water.
Explanation:
If you look at the graph, Object A weighs ~6 grams and is ~4 cm3 in volume
Density = Mass/Volume
So 6 grams/4 cm3 = 1.5 g/cm3
Water has a density of 1 g/cm3 and because Object A density is higher than that of water, it sinks.
:)
Answer: The correct option is B.
Explanation: To describe the motion of an object, we use the equations of motion.



From the above equations, we require position, speed and direction through which we an calculate the displacement, velocity and acceleration.
To calculate the complete motion of an object, we require all the three factors.
Hence, the correct option is B.
Answer:
gravitational energy
Explanation:
It is gravitational (potential) energy because of the place that the rock holds in the gravitational field. It has <u>potential</u> to move downward, because of <u>gravity</u>.