Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N
A parsec is a measurement of distance.
Start with 2,000 grams.
After 1 half-life, 1,000 grams are left.
After another half-life, 500 are left.
After another half-life, 250 are left.
After another half-life, 125 are left.
That was FOUR half-lifes.
X = 4 .
Answer:
m = 5.22 kg
Explanation:
The force acting on the bucket is 52.2 N.
We need to find the mass of the bucket.
The force acting on the bucket is given by :
F = mg
g is acceleration due to gravity
m is mass

So, the mass of the bucket is 5.22 kg.
Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them. Newton's law of universal gravitation states that every point mass in the universe attracts every other point mass with a force that is directly proportional to the product of their masses, and inversely proportional to the square of the distance between them.