Arrows point away from both north and south.
Answer:
the answer is A.) -1 * 10^3[N]
Explanation:
The solution consists of two steps, the first step is using the following kinematic equation:
![v=v_{i} +a*t\\where:\\v=final velocity [m/s]\\v_{i}=initial velocity [m/s]\\a=acceleration[m/^2]\\t=time[s]\\](https://tex.z-dn.net/?f=v%3Dv_%7Bi%7D%20%2Ba%2At%5C%5Cwhere%3A%5C%5Cv%3Dfinal%20velocity%20%5Bm%2Fs%5D%5C%5Cv_%7Bi%7D%3Dinitial%20velocity%20%5Bm%2Fs%5D%5C%5Ca%3Dacceleration%5Bm%2F%5E2%5D%5C%5Ct%3Dtime%5Bs%5D%5C%5C)
The initial velocity is 10 [m/s], and the final velocity is zero because the car stops in 0.5[s].
Replacing:
![0=10+a*(0.5)\\a=-20[m/s^2]](https://tex.z-dn.net/?f=0%3D10%2Ba%2A%280.5%29%5C%5Ca%3D-20%5Bm%2Fs%5E2%5D)
Now in the second part, we need to use the second law of Newton, this law relates the forces with the acceleration of a body.
In the moment when the car stops suddenly the driver will feel the force of the seatbelt acting in the opposite direction of the movement.
![F=m*a\\F=50[kg]*(-20[m/s^2])\\units\[kg]*[m/s^2]=[N]\\F=-1000[N] or -1*10^{3} [N]](https://tex.z-dn.net/?f=F%3Dm%2Aa%5C%5CF%3D50%5Bkg%5D%2A%28-20%5Bm%2Fs%5E2%5D%29%5C%5Cunits%5C%5Bkg%5D%2A%5Bm%2Fs%5E2%5D%3D%5BN%5D%5C%5CF%3D-1000%5BN%5D%20or%20-1%2A10%5E%7B3%7D%20%5BN%5D)
The minus sign means that the force is acting in the opposite direction of the movement.
To solve this problem we will apply the concepts related to the kinematic equations of motion. We will start calculating the maximum height with the given speed, and once the total height of fall is obtained, we will proceed to calculate with the same formula and the new height, the speed of fall.
The expression to find the change in velocity and the height is,

Replacing,


Thus the total height reached by the ball is
H = 22m+13.0612m
H = 35.0612m
Now calculate the velocity while dropping down from the maximum height as follows

Substituting the new height,



Answer:
This can be part of your paragraph.
Explanation:
From the cornea, the light passes through the pupil. The iris, or the colored part of your eye, controls the amount of light passing through. From there, it then hits the lens. This is the clear structure inside the eye that focuses light rays onto the retina.
Answer:
I only know answer A and it's 2825.28 N/m, with rounding it's 2825.5
Explanation:
Use the m*g*h=1/2*k*x^2 equation
96*9.81*60=1/2*k*2^2
5650.56=2k
5650.56/2=2825.28N/m