Answer:
3. less than the kinetic energy of thesilly putty before the collision.
Explanation:
This is because kinetic energy is dependent on the mass and velocity of an object. Mathematically, it is given as:
K. E. = ½*m*v²
Where m = mass
v = velocity
In the case of the silly putty, we know that the masses of the ball of silly putty and the bowling ball are conserved, hence, the kinetic energy depends solely on the velocity at which the object moves.
After the collision with the bowling ball, because of how heavy a bowling ball is, the speed of the silly putty and bowling ball will definitely be less than the speed of the silly putty before collision, i. e. u > v.
Hence, the kinetic energy after collision will be less than the kinetic energy before collision.
<span>In this particular case, where car is moving through curvature, so it is moving in circular motion, force acting on car is centripetal force which holds car not to fly out. Centripetal force is always pointed in the middle of circle. Here frictional force has role of centripetal force. If frictional force is to weak, car would fly out of curvutare.</span>
Suppose earth is a soid sphere which will attract the body towards its centre.So, acc. to law of gravitation force on the body will be,
F=G*m1m2/R^2
but we now that F=ma
and here accleration(a)=accleration due to gravity(g),so
force applied by earth on will also be mg
replace above F in formula by mg and solve,
F=G*mE*m/R^2 ( here mE is mass of earth and m is mass of body)
mg=G*mEm/R^2
so,
g =G*mE/R^2
Uniformly around the globe. it is mostly found in earths atmosphere.