Answer:
Q = 836.4 Joules.
Explanation:
Given the following data;
Mass = 100 grams
Initial temperature = 25°C
Final temperature = 45°C
We know that the specific heat capacity of water is equal to 4.182 J/g°C.
To find the quantity of heat;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 45 - 25
dt = 20°C
Substituting the values into the equation, we have;
Q = 836.4 Joules.
<span>In order for the results to be valid, the dependent variable can only be affected by the independent variable, so somethings need to be kept constant. The things that need to be kept constant are called controlled variables.</span>
Answer:
idk srry
Explanation:
i wish I could help you out
Answer:
Weight of the fluid that the object displaces.
Explanation:
When the fluid is completely immersed in a fluid, it experiences pressure from all the direction. While the object is immersed in the fluid a force acts on it in the opposite direction, i.e., upwards. This force is termed as buoyant force.
Also, as per the Archimedes' Principle, the force experience by the object is the same as the weight of the fluid that gets displaced by the object.
Thus on complete immersion of the object in the fluid, it experiences the force same as the weight of the fluid that gets displaced
Answer:
(b) To get m3 to slide, m1 must be increased, never decreased.
Explanation:
Lab experiments require attentiveness. If there is one thing missed or not taken seriously whole experiment could go wrong. In this case to slide m3 there should be more weight at m1. If the weight of m1 is lesser than m3 then the object will not slide. It will remain at the point where there is more weight. To slide an object there must be less frictional surface and more weight placed at the desired end point.