Well, the acceleration is the difference of speeds divided by the time period.

.
One rev/s is

, so our final result is

.
Answer:81.235N
Explanation:
Work=88J
theta=10°
distance=1.1 meters
work=force x cos(theta) x distance
88=force x cos10 x 1.1 cos10=0.9848
88=force x 0.9848 x 1.1
88=force x 1.08328
Divide both sides by 1.08328
88/1.08328=(force x 1.08328)/1.08328
81.235=force
Force=81.235
Answer:
a = 3.61[m/s^2]
Explanation:
To find this acceleration we must remember newton's second law which tells us that the total sum of forces is equal to the product of mass by acceleration.
In this case we have:
![F = m*a\\\\m=mass = 3.6[kg]\\F = force = 13[N]\\13 = 3.6*a\\a = 3.61[m/s^2]](https://tex.z-dn.net/?f=F%20%3D%20m%2Aa%5C%5C%5C%5Cm%3Dmass%20%3D%203.6%5Bkg%5D%5C%5CF%20%3D%20force%20%3D%2013%5BN%5D%5C%5C13%20%3D%203.6%2Aa%5C%5Ca%20%3D%203.61%5Bm%2Fs%5E2%5D)
given that
mass of ball = 0.095 kg
initial velocity of ball towards the wall = 40 m/s
final velocity of the ball after it rebound = 30 m/s
now change in momentum is given as



So change in momentum will be 6.65 kg m/s
Based on the equation KE = 1/2(m)(v^2), Kinetic Energy can be measured based on velocity. If an object has a large velocity, it have a larger kinetic energy than if the velocity is small.
Hope this helps.
If this helped you, please vote me as brainliest!