A method of procedure that has characterized natural science since the 17th century, consisting in systematic observation, measurement, and experiment, and the formulation, testing, and modification of hypotheses.
Answer:
θ = 10.28º
Explanation:
To find the angle of refraction use the equation of refraction
n₁ sin θ₁ = n₂ sin θ₂
where index 1 is for incident light and index 2 is for refracted light.
sin θ₂ = n₁ / n₂ sin θ
let's calculate
sin = 1 / 1.3 sin 0.23
sin = 0.175
θ= 0.17528 rad
let's reduce to degrees
θ = 0.17528 rad (180ª / pi rad)
θ = 10.28º
Answer:
1.696 nm
Explanation:
For a diffraction grating, dsinθ = mλ where d = number of lines per metre of grating = 5510 lines per cm = 551000 lines per metre and λ = wavelength of light = 467 nm = 467 × 10⁻⁹ m. For a principal maximum, m = 1. So,
dsinθ = mλ = (1)λ = λ
dsinθ = λ
sinθ = λ/d.
Also tanθ = w/D where w = distance of center of screen to principal maximum and D = distance of grating to screen = 1.03 m
From trig ratios 1 + cot²θ = cosec²θ
1 + (1/tan²θ) = 1/(sin²θ)
substituting the values of sinθ and tanθ we have
1 + (D/w)² = (d/λ)²
(D/w)² = (d/λ)² - 1
(w/D)² = 1/[(d/λ)² - 1]
(w/D) = 1/√[(d/λ)² - 1]
w = D/√[(d/λ)² - 1] = 1.03 m/√[(551000/467 × 10⁻⁹ )² - 1] = 1.03 m/√[(1179.87 × 10⁹ )² - 1] = 1.03 m/1179.87 × 10⁹ = 0.000848 × 10⁻⁹ = 0.848 × 10⁻¹² m = 0.848 nm.
w is also the distance from the center to the other principal maximum on the other side.
So for both principal maxima to be on the screen, its minimum width must be 2w = 2 × 0.848 nm = 1.696 nm
So, the minimum width of the screen must be 1.696 nm
Answer:
q=3.5*10^-4
Explanation:
<u>concept:</u>
The force acting on both charges is given by the coulomb law:
F=kq1q2/r^2
the centripetal force is given by:
Fc=mv^2/r
The kinetic energy is given by:
KE=1/2mv^2
<u>The tension force:</u>
<u><em>when the plane is uncharged </em></u>
T=mv^2/r
T=2(K.E)/r
T=2(50 J)/r
T=100/r
<u><em>when the plane is charged </em></u>
T+k*|q|^2/r^2=2(K.E)charged/r
100/r+k*|q|^2/r^2=2(53.5 J)/r
q=√(2r[53.5 J-50 J]/k) √= square root on whole
q=√2(2)(53.5 J-50 J)/8.99*10^9
q=3.5*10^-4
Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N