Answer:
18min
Explanation:
v=d/t
t=d/v= 27/90 =0.3hrs =18min
Answer:
Please do not take my word for this at all, but this is what I found, "When the pendulum swings back down, the potential energy is converted back into kinetic energy. At all times, the sum of potential and kinetic energy is constant." So I think the answer is B also you are anime fan too lol :DD I love hinata
Explanation:
Explanation:
As the given data is as follows.
ohm
,
ohm,
= 1200
(as 1 k ohm = 1000 m)
(a) We will calculate the maximum resistance by combining the given resistances as follows.
Max. Resistance = 
=
ohm
= 2600 ohm
or, = 2.6
ohm
Therefore, the maximum resistance you can obtain by combining these is 2.6
ohm.
(b) Now, the minimum resistance is calculated as follows.
Min. Resistance = 
= 
=
ohm
Hence, we can conclude that minimum resistance you can obtain by combining these is
ohm.
Answer:
F= 5.71 N
Explanation:
width of door= 0.91 m
door closer torque on door= 5.2 Nm
In order to hold the door in open position we need to exert an equal and opposite torque, to the door closer torque, on the door.
so wee need to exert 5.2 Nm torque on the door.
If we want to apply minimum force to exert the required torque we need to apply force perpendicularly on the door knob (end of door) so that to to greater moment arm.
T= r x F
T= r F sin∅
F= T/ (r * sin∅)
F= 5.2/ (0.91 * 1)
F= 5.71 N
Answer:
Friction
Explanation:
As the toy cars rolls away, more friction is created. The more friction there is, the more friction on surface rubs against another which creates friction which in-term slows it down. Hope this helps.