Answer:
C) True. At maximum displacement, its instantaneous velocity is zero.
Explanation:
The simple harmonic movement is given by
x = A cos wt
Speed
v = - A w sin wt
At the point of maximum displacement x = A
A = A cos wt
cos wt = 1
wt = 0
We replace the speed
v = -Aw sin 0 = A w
Speed is maximum
Let's review the claims
A) False. Speed is zero
B) False. It can be determined
C) True. Agree with our result
D) False. When one is maximum the other is minimum
Let the cold water go up x degrees.
Let the hot water go down 100 - x degrees.
The formula for heat exchange is m*c*delta t
Givens
Ice
deltat = x
m = 0.50 kg
c = 4.18
Hot water
deltat = 100 - x
m = 1.5 kg
c = 4.18
Formula
The heat up = heat down
0.50 * c * x = 1.5 * c * (100 - x) Divide both sides by c
Solution
0.50 *x = 1.5*(100 - x) Remove the brackets.
0.5x = 150 - 1.5x Add 1.5x to both sides.
0.5x + 1.5x = 150 - 1.5x + 1.5x Combine like terms
2x = 150 Divide by 2
x = 75
Answer
A
Answer:
θ=19.877⁰
Explanation:
Given data
Velocity Va=34.0 km/h
Velocity Va=100 km/h
To find
Angle θ
Solution
We want the bird to fly with velocity Vb=100 km/h with an angle θ relative to the ground so that the bird fly due south relative to the ground.From figure which is attached we got
Sinθ=(Va/Vb)
Sinθ=(34.0/100)
θ=Sin⁻¹(34.0/100)
θ=19.877⁰
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>
Carbohydrates, in cellular respiration.