Answer:
53.18 gL⁻¹
Explanation:
Given that:
------equation (1)
where;
Formation Constant
However, the Dissociation of
yields:
⇄
-------------- equation (2)
where;
the Solubility Constant

From equation (1);
--------- equation (3)
From equation (2)
--------- equation (4)
In
, the net reaction for
can be illustrated as:
⇄

The equilibrium constant (K) can be written as :

![\frac{[[Cu(NH_3)_2]^+][Br^-]}{[NH_3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5BCu%28NH_3%29_2%5D%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BNH_3%5D%5E2%7D)
If we multiply both the numerator and the denominator with
; we have:

![\frac{[[Cu(NH_3)_2]^+][Br^-]}{[NH_3]^2}*\frac{[Cu^+]}{[Cu^+]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5BCu%28NH_3%29_2%5D%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BNH_3%5D%5E2%7D%2A%5Cfrac%7B%5BCu%5E%2B%5D%7D%7B%5BCu%5E%2B%5D%7D)

![\frac{[[Cu(NH_3)_2]^+}{[NH_3]^2[Cu^+]}*{[Cu^+][Br^-]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5BCu%28NH_3%29_2%5D%5E%2B%7D%7B%5BNH_3%5D%5E2%5BCu%5E%2B%5D%7D%2A%7B%5BCu%5E%2B%5D%5BBr%5E-%5D%7D)



≅ 
Now; we can re-write our equilibrium constant again as:

![\frac{[[Cu(NH_3)_2]^+][Br^-]}{[NH_3]^2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B%5BCu%28NH_3%29_2%5D%5E%2B%5D%5BBr%5E-%5D%7D%7B%5BNH_3%5D%5E2%7D)



By finding the square of both sides, we have








In gL⁻¹; the solubility of
in 0.76 M
solution will be:

= 53.18 gL⁻¹
Methane and water because they are both compounds
The atoms start vibrating faster
Answer:
The answer is 0.36 kg/s NO
Explanation:
the chemical reaction of NH3 to NO is as follows:
4NH3(g) + 5O2(g) ⟶4 NO(g) +6 H2O(l)
We have the following data:
O2 Volume rate = 645 L/s
P = 0.88 atm
T = 195°C + 273 = 468 K
NO molecular weight = 30.01 g/mol
we calculate the moles found in 645 L of O2:
P*V = n*R*T
n = P*V/R*T
n= (0.88 atm * 645L/s)/((0.08205 L*atm/K*mol) * 468 K) = 14.78 moles of O2
With the reaction we can calculate the number of moles of NO and with its molecular weight we will have the rate of NO:
14.78 moles/s O2 * 4 molesNO/5 molesO2 * 30.01 g NO/1 molNO x 1 kgNO/1000 gNO = 0.36 kg/s NO
Answer:
Explanation:
Given that:

From above:

To predict the effect of the addition of Br₂(g);
The addition of Br₂(g) will favor the equilibrium to shift to the left i.e. formation of NOBr
The removal of some NOBr will cause the equilibrium position to shift to the left side. This is because concentration on the left side is decreased and the concentration on the right side will be increased. Thus, the equilibrium will shift towards where the concentration is reduced which is the left side.