Answer:
The corridor's distance is "90 m".
Explanation:
- She heads in the east directions but creates the first pause, meaning she crosses the distance 'x' in step 1.
- Now, provided that perhaps the distance by her to another fountain or waterfall just after the first stop is twice as far away she traveled.
- Because she moved the distance of 'x,' then, therefore, her distance towards the fountain of '2x.' She casually strolls and once again pauses 60 m beyond her stop.
- The gap about her to the waterfall during that time approximately twice the distance and her to the eastern end of the hallway.
- Assume her gap from either the east end of the platform seems to be 'y' at either the second stop, after which '2y' may become the distance between the 2nd pause and the waterfall.
Now,
⇒
⇒
The total distance of the corridor will be:
=
=
=
=
Explanation:
tilting it will raise the height of its center of gravity.
Answer:
Explanation:
Givens
m = 942
F = 6731
t = 21 seconds
vi = 0
vf = ?
Formula
F = m * (vf - vi ) / t
Solution
6731 = 942*(vf - 0)/21 Multiply both sides by 21
6731 * 21 = 942*vf
141351 = 942*vf Divide by 942
141351/942 = vf
vf = 151 m/s
Answer:
a = -0.33 m/s² k^
Direction: negative
Explanation:
From Newton's law of motion, we know that;
F = ma
Now, from magnetic fields, we know that;. F = qVB
Thus;
ma = qVB
Where;
m is mass
a is acceleration
q is charge
V is velocity
B is magnetic field
We are given;
m = 1.81 × 10^(−3) kg
q = 1.22 × 10 ^(−8) C
V = (3.00 × 10⁴ m/s) ȷ^.
B = (1.63T) ı^ + (0.980T) ȷ^
Thus, since we are looking for acceleration, from, ma = qVB; let's make a the subject;
a = qVB/m
a = [(1.22 × 10 ^(−8)) × (3.00 × 10⁴)ȷ^ × ((1.63T) ı^ + (0.980T) ȷ^)]/(1.81 × 10^(−3))
From vector multiplication, ȷ^ × ȷ^ = 0 and ȷ^ × i^ = -k^
Thus;
a = -0.33 m/s² k^