Answer:
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
Explanation:
Given;
Mass of child m = 16 kg
Speed of each car v = 59.0 mi/h = 26.37536 m/s
Time t = 0.05s
Applying the impulse momentum equation;
Impulse = change in momentum
Ft = ∆(mv)
F = ∆(mv)/t
F = m(∆v)/t
Where;
F = force
t = time
m = mass
v = velocity
Since the final speed of the car is zero(at rest) then;
∆v = 0 - v = -26.37536 m/s
Substituting the given values;
F = 16×-26.37536/0.05
F = -8440.1152 N
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
I think you need to add more.. but I may know where you are leading
Was he 200 m away and made the trip in 200 seconds?
If yes...
2 m/s was his speed and 0 velocity
It’s D. An enlargement (hope this helps!)
Answer:
<h2>602.08 N</h2>
Explanation:
The force supplied by the train can be found by using the formula

w is the workdone
d is the distance
From the question we have

We have the final answer as
<h3>602.08 N</h3>
Hope this helps you
It takes sunlight 8 minutes to reach earth , so yes