Answer:
39.240 W
Explanation:
Let's start by calculating the work done by the engine. We can assume that it is the same work done by the weight of the object to bring it from 40m to the surface: as much energy it takes to bring it up, the same ammount it takes to bring it down. Said work is 
At this point we can simply apply the definition of power, that is
, to get the power of the engine is 
Are there any answer choices?
Submarines use <span>buoyancy by filling ballast tanks up with water. When they are filled with water, they are more dense than the surrounding water, so they are able to sink. If they want to rise, they fill these tanks up with air so that the density is less than the water it surrounds.
Hope this helps! :)</span>
Answer:
magnatic force can be created
Answer : The temperature when the water and pan reach thermal equilibrium short time later is, 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


where,
= specific heat of aluminium = 
= specific heat of water = 
= mass of aluminum = 0.500 kg = 500 g
= mass of water = 0.250 kg = 250 g
= final temperature of mixture = ?
= initial temperature of aluminum = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:


Therefore, the temperature when the water and pan reach thermal equilibrium short time later is, 
Answer:
The second vector
points due West with a magnitude of 600N
Explanation:
The original vector
points with a magnitude of 200N due east, the Resultant vector
points due west (that's how east/west direction can be interpreted, from east to west) with a magnitude of 400N. If we choose East as the positive direction and West as the negative one, we can write the following vectorial equation:

With the negative sign signifying that the vector points west.