1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Brrunno [24]
3 years ago
15

Initially, a 2.00-kg mass is whirling at the end of a string (in a circular path of radius 0.750 m) on a horizontal frictionless

surface with a tangential speed of 5 m/s. The string has been slowly winding around a vertical rod, and a few seconds later the length of the string has shortened to 0.250 m. What is the instantaneous speed of the mass at the moment the string reaches a length of 0.250 m?
Physics
1 answer:
drek231 [11]3 years ago
8 0

Answer:

v_f = 15 \frac{m}{s}

Explanation:

We can solve this problem using conservation of angular momentum.

The angular momentum \vec{L} is

\vec{L}  = \vec{r} \times \vec{p}

where \vec{r} is the position and \vec{p} the linear momentum.

We also know that the torque is

\vec{\tau} = \frac{d\vec{L}}{dt}  = \frac{d}{dt} ( \vec{r} \times \vec{p} )

\vec{\tau} =  \frac{d}{dt}  \vec{r} \times \vec{p} +   \vec{r} \times \frac{d}{dt} \vec{p}

\vec{\tau} =  \vec{v} \times \vec{p} +   \vec{r} \times \vec{F}

but, as the linear momentum is \vec{p} = m \vec{v} this means that is parallel to the velocity, and the first term must equal zero

\vec{v} \times \vec{p}=0

so

\vec{\tau} =   \vec{r} \times \vec{F}

But, as the only horizontal force is the tension of the string, the force must be parallel to the vector position measured from the vertical rod, so

\vec{\tau}_{rod} =   0

this means, for the angular momentum measure from the rod:

\frac{d\vec{L}_{rod}}{dt} =   0

that means :

\vec{L}_{rod} = constant

So, the magnitude of initial angular momentum is :

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i| cos(\theta)

but the angle is 90°, so:

| \vec{L}_{rod_i} | = |\vec{r}_i||\vec{p}_i|

| \vec{L}_{rod_i} | = r_i * m * v_i

We know that the distance to the rod is 0.750 m, the mass 2.00 kg and the speed 5 m/s, so:

| \vec{L}_{rod_i} | = 0.750 \ m \ 2.00 \ kg \ 5 \ \frac{m}{s}

| \vec{L}_{rod_i} | = 7.5 \frac{kg m^2}{s}

For our final angular momentum we have:

| \vec{L}_{rod_f} | = r_f * m * v_f

and the radius is 0.250 m and the mass is 2.00 kg

| \vec{L}_{rod_f} | = 0.250 m * 2.00 kg * v_f

but, as the angular momentum is constant, this must be equal to the initial angular momentum

7.5 \frac{kg m^2}{s} = 0.250 m * 2.00 kg * v_f

v_f = \frac{7.5 \frac{kg m^2}{s}}{ 0.250 m * 2.00 kg}

v_f = 15 \frac{m}{s}

You might be interested in
After landing on an unfamiliar planet, a space explorer constructs a simple pendulum of length 55.0 cm. She finds the pendulum m
forsale [732]

Answer:

Acceleration due to gravity will be g=5.718m/sec^2

Explanation:

We have given length of pendulum l = 55 cm = 0.55 m

It is given that pendulum completed 100 swings in 145 sec

So time taken by pendulum for 1 swing =\frac{145}{100}=1.45sec

We have to find the acceleration due to gravity at that point

We know that time period of pendulum;um is given by

T=2\pi \sqrt{\frac{l}{g}}

So 1.45=2\times 3.14\times \sqrt{\frac{0.55}{g}}

\sqrt{\frac{0.55}{g}}=0.230

Squaring both side

{\frac{0.3025}{g}}=0.0529

g=5.718m/sec^2

So acceleration due to gravity will be g=5.718m/sec^2

3 0
3 years ago
A swimming pool, 20.0 m ? 12.5 m, is filled with water to a depth of 3.71 m. if the initial temperature of the water is 18.5°c,
Semenov [28]
1askjjjohikjgnvrfntttkmvvvvvvvfdrtgfgfgfgffdxxsd

7 0
3 years ago
Skydiver jumps out of a plane she falls down word and very fast P. When she Open Sarah parachute she slows down. What force pull
Thepotemich [5.8K]
There are two forces acting on a parachute with a parachutist: the force of gravity and the air resistance. The force pulling the skydiver to the ground would be Wright force
4 0
2 years ago
Question 14 (2 points)
sveticcg [70]

Answer:

after 2 seconds its velocity is -20 m/s. after 3 seconds its velocity is -30 m/s. after 10 seconds its velocity is -100 m/s.

Explanation:

This is my answer.

7 0
2 years ago
The three basic economic questions societies face are (1) what goods and services to produce, (2) how to produce those goods and
lord [1]

Answer:

For whom are goods and services to be produced? In other words, who gets what?

What should we produce?

For whom should we produce it?

Explanation:

8 0
2 years ago
Other questions:
  • A street light is at the top of a 10 ft tall pole. A woman 6 ft tall walks away from the pole with a speed of 8 ft/sec along a s
    7·1 answer
  • If the threshold wavelength for copper is 2665 A, calculate the maximum kinetic energy of a photoelectron generated by ultraviol
    5·1 answer
  • A 65-kg bungee jumper, who is attached to one end of an 85-m long bungee cord that has its other end tied to a bridge, jumps off
    13·1 answer
  • Elements that typically give up electrons
    12·1 answer
  • Two point charges, A and B, are separated by a distance of 19.0 cm . The magnitude of the charge on A is twice that of the charg
    7·1 answer
  • Water at 20oC flows through a long elliptical duct 30 cm wide and 22 cm high. What average velocity, in m/s, would cause the wei
    12·2 answers
  • In a local bar, a customer slides an empty beer mug down the counter for a refill. The height of the counter is 1.2 m. The mug s
    13·1 answer
  • An object of mass m moves horizontally, increasing in speed from 0 to v in a time t. The power necessary to accelerate the objec
    9·1 answer
  • At what type of plate boundary is lithosphere created?
    14·1 answer
  • Standing 38.6 m away from a rock wall, you yell. How much time in seconds will it take you to hear your echo to two significant
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!