a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
D. Was a leader in the woman's suffrage movement
5m/s
Explanation:
Given parameters:
Mass of ball = 0.1kg
Force on the ball = 5N
time taken = 0.1s
Unknown:
final speed of the ball = ?
Solution:
According to newton's second law "the net force on a body is the product of its mass and acceleration".
Force = mass x acceleration equation 1
Acceleration =
V is the final velocity
U is the initial velocity
T is the time taken
U = O since it is a stationary body;
a = 
Input "a" into equation 1
F = m x 
5 = 0.1 x 
V = 5m/s
learn more:
Newton's laws brainly.com/question/11411375
#learnwithBrainly
Answer: Tension = 47.8N, Δx = 11.5×
m.
Tension = 95.6N, Δx = 15.4×
m
Explanation: A speed of wave on a string under a tension force can be calculated as:

is tension force (N)
μ is linear density (kg/m)
Determining velocity:


0.0935 m/s
The displacement a pulse traveled in 1.23ms:


Δx = 11.5×
With tension of 47.8N, a pulse will travel Δx = 11.5×
m.
Doubling Tension:



|v| = 0.1252 m/s
Displacement for same time:


15.4×
With doubled tension, it travels
15.4×
m