The answer is: (5696 J) / (155 g) / (40.0 - 25.0)°C = 2.45 J/g·°C
In areas where resistance is present, otherantimalarials<span>, such as </span>mefloquine<span> or atovaquone, may be used instead. The Centers for Disease Control and Prevention recommend against treatment of malaria with chloroquine alone due to more effective combinations.</span>
Answer:
sunrise
Explanation:
The sun rises from the east as there is a time difference the further east you go.
I believe the answer is A. please let me know if i am correct or not.
Answer:
10.4664 grams of CO
Explanation:
Remark
There's a couple of things you must look out for in this question.
1. The use of the term atoms. There are 2 atoms in each mol of CO
2. You need to divide by 2 to find the number of molecules which will lead to moles.
<u>Step one</u>
Divide the number of atoms by 2
4.50 e^23 / 2 atoms = 2.25 * 10^23 molecules.
<u>Step Two</u>
Find the number of moles of CO
1 mol of anything is 6.02 * 10^23 molecules in this case
x = 2.25 * 10^23 molecules
1/x = 6.02 * 10^23/2.25 * 10 ^23 Cross multiply
1 * 2.25 * 10^23 = 6.02*10^23 * x Divide by 6.02 * 10^23
2.25 * 10 ^ 23 / 6.02 * 10^23 = x
x = .3738 moles of CO
<u>Step Three</u>
Find the gram molecular mass of CO
C = 12
O = 16
1 mole = 12 + 16 = 28 grams.
<u>Step Four</u>
Find the number of gram in 0.3738 mols
1 mol = 28 grams
0.3738 mol = x Cross multiply
x = 28 * 0.3738
x = 10.4664 grams