Answer:
(D) Neither I nor II
Explanation:
The reagent potassium hydrogen phthalate is found in pure form and it is not partially hydrated .
The pallet form of NaOH ( solid form ) absorbs carbon dioxide gas from the atmosphere but NaOH in solution form does not absorb carbon dioxide .
Hence option D ) is right choice .
Answser:
3.77 mg of K-40 decayed into Ar-40.
Data:
1) K-40, Ca-40, Ar-40: all three have the same atomic mass
2) 90%<span> of the potassium-40 will decay into calcium-40
3) 10% of the potassium-40 will decay into argon-40.</span>
4) K-40 inside the rock = 0.81 mg
5) Ar-40 trapped = 0.377 mg
Soltuion:
1) 0.377 mg of Ar-40 is the 10% of the mass of the K-40 that decayed
=> x * 10% = 0.377 mg => x * 0.1 = 0.377mg
=> x = 0.377 mg / 0.1 = 3.77 mg
That means that 3.77 mg of K-40 decayed into Ar-40. And this is the answer to the question.
Additionaly, you can analyze the content of all K-40 and Ca-40, to understand better the case.
2) The mass of the K-40 that decayed into Ca-40 is 9 times (ratio 9:1) the amount that decayed into Ar-40 =>
mass of K-40 that decayed into Ca-40 = 9 * 0.377 = 3.393 mg
3) Total amount of K-40 that decayed = amount that decayed into Ar-40 + amount that decayed into Ca-40 = 0.377mg + 3.393mg = 3.77 mg
4) Original amount of K-40 = amount of K-40 that decayed + amount of K-40 present in the rock = 3.77mg + 0.81 mg = 4.58 mg
5) amount of K-40 that decayed into Ar-40 as percent
% = [3.77 mg / 4.58mg] * 100 = 82.31 %.
Answer:
There will be no observed impact of adding twice as much Na2CO3 on the product
Explanation:
Stoichiometry gives the relationship between reactants and products in terms of mass, mole and volume.
If we consider the stoichiometry of the reaction, we will discover that the reaction occurs in a 1:1 ratio. This implies that use of twice the amount of Na2CO3 will only lead to an excess of Na2CO3 making the other reactant the limiting reactant. Once the other reactant is used up, the reaction quenches.
Hence, use of twice as much Na2CO3 has no impact on the quantity of product produced.
One oxygen molecule is made of O2