<span>Take a look at this periodic table.
You start in the left upper corner (1s) then you go to the right untill you can't go further, then you go 1 row down and start at the left again.
So the order will be 1s,2s,2p,3s,3p,4s,3d,4p... etc</span>
The atomic number (Z) of the 3 elements F, Ne, and Na, are 9, 10, and 11.
Explanation:
Now Z refers to the number of protons in the element's nucleus, and protons are POSITIVELY charged particles. So a fluoride ion, F−, has 10 electrons rather than 9 (why?), a neutral neon atom has 10 electrons, and a sodium ion, Na+, also has 10 electrons (why?).
So the 3 species are ISOELECTRONIC; they possess the same number of electrons.
You should look at the Periodic Table to confirm the electron number. Elements are (usually) electrically neutral (sometimes they can be ionic if they have lost or gained electrons). If there are 10 positively charged protons in the nucleus, there are NECESSARILY 10 electrons associated with the NEUTRAL atom. I don't know WHY I am capitalizing certain WORDS.
You might ask why sodium will form a positive ion, Na+, whereas F forms a negative ion, F−. This again is a Periodic phenomenon, and explicable on the basis of the electronic structure that the Table formalizes.
Neutral metals tend to be electron-rich species, which have 1 or more electrons in a valence shell remote from the nuclear charge. On the other hand, neutral non-metals have valence electrons in incomplete shells, that do not effectively shield the nuclear charge. The demonstrable consequence is that metals lose electrons to form positive ions, whereas non-metals gain electrons to form negative ions.
Answer:
In thermodynamics, the Joule–Thomson effect describes the temperature change of a real gas or liquid when it is forced through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment. This procedure is called a throttling process or Joule–Thomson process
Break down in to tiny prices as the water hit the tree