Answer:
k= 1.925×10^-4 s^-1
1.2 ×10^20 atoms/s
Explanation:
From the information provided;
t1/2=Half life= 1.00 hour or 3600 seconds
Then;
t1/2= 0.693/k
Where k= rate constant
k= 0.693/t1/2 = 0.693/3600
k= 1.925×10^-4 s^-1
Since 1 mole of the nuclide contains 6.02×10^23 atoms
Rate of decay= rate constant × number of atoms
Rate of decay = 1.925×10^-4 s^-1 ×6.02×10^23 atoms
Rate of decay= 1.2 ×10^20 atoms/s
Answer:
m = 65.637 g
Explanation:
Heat = 0.612 kJ = 612 J ( Converting to J by multiplying by 1000)
Initial Temperature = 30.°C
Final Temperature = 51°C
Temperature change = Final Temperature - Initial Temperature = 51 - 30 = 21°C
Mass = ?
The relationship between these quantities is given by the equation;
H = mCΔT
where c = 0.444 J/g°C
Inserting the values in the equation;
612 = m * 0.444 * 21
m = 612 / (0.444 * 21)
m = 65.637 g
U literally put all yo information on their
Reword it so we can understand it better, to answer your quetion