Answer: V=IR
Explanation: for a series circuit connected to a battery supply, the total emf across the circuit is given as
E = I(R + r) and by expanding, we have that E =IR + It
Where r is the internal resistance of the battery
I is the total current flowing in the circuit
R total load resistance in the circuit.
E is the total emf of the circuit.
The total emf is the sum of 2 separate voltages.
"IR" which is the terminal voltage and "Ir" which is the loss voltage.
The teenila voltage is the voltage flowing in the circuit based on the equivalent resistance of the circuit while the loss voltage is the wasted voltage based on the internal resistance of the battery source.
The black squirrel has zero kinetic energy (if it's not moving) and lower gravitational potential energy than the red squirrel or zero gravitational potential energy if the ground is assumed to be zero gravitational potential line.
First, determine the mass of the object by dividing its weight on Earth by 9.8 m/s² as shown below,
m = 250 N / 9.8 m/s² = 25.51 kg
Then, multiply the obtained mass by the acceleration due to gravity (g) on Pluto.
W (in Pluto) = (25.51 kg) x (0.61 m/s²) = 15.56 N
Therefore, the object will only weigh 15.56 N.
<span>Hydrocarbons are molecules that contain only carbon and hydrogen.</span>
Due to carbon's unique bonding patterns, hydrocarbons can have single, double, or triple bonds between the carbon atoms.
The names of hydrocarbons with single bonds end in "-ane," those
with double bonds end in "-ene," and those with triple bonds end in
"-yne".
The bonding of hydrocarbons allows them to form rings or chains.
Pure water.
A salt solution contains impurities whereas pure water will not contain any impurities.
Impurities increase the boiling point (freezing point) of a substance.
Thus, I would expect the pure water solution to freeze faster than the salt solution.