Of course steady state condition occurs in almost any system but time it will occurs varies among system. for this kind of system, conduction, steady state conduction occurs when the temperature change from one point to the point is already constant. steady state is not achieved immediately because the heat travels and material will not be heated at the same way at the starting point.
A) 750 m
First of all, let's find the wavelength of the microwave. We have
is the frequency
is the speed of light
So the wavelength of the beam is

Now we can use the formula of the single-slit diffraction to find the radius of aperture of the beam:

where
m = 1 since we are interested only in the central fringe
D = 30 km = 30,000 m
a = 2.0 m is the aperture of the antenna (which corresponds to the width of the slit)
Substituting, we find

and so, the diameter is

B) 0.23 W/m^2
First we calculate the area of the surface of the microwave at a distance of 30 km. Since the diameter of the circle is 750 m, the radius is

So the area is

And since the power is

The average intensity is

Answer:
the bending moment will be W from either sides
Explanation:
bending moment= force (load) * perpendicular distance, if I understand the question the distance will be 1/2 of the length
=> f x 1/2(l) =W*1/2(2) =W
The answer is:
Both the distance traveled in a given time and the magnitude of the acceleration at a given instant
Hope I Helped!
Answer:
39.81 N
Explanation:
I attached an image of the free body diagrams I drew of crate #1 and #2.
Using these diagram, we can set up a system of equations for the sum of forces in the x and y direction.
∑Fₓ = maₓ
∑Fᵧ = maᵧ
Let's start with the free body diagram for crate #2. Let's set the positive direction on top and the negative direction on the bottom. We can see that the forces acting on crate #2 are in the y-direction, so let's use Newton's 2nd Law to write this equation:
- ∑Fᵧ = maᵧ
- T₁ - m₂g = m₂aᵧ
Note that the tension and acceleration are constant throughout the system since the string has a negligible mass. Therefore, we don't really need to write the subscripts under T and a, but I am doing so just so there is no confusion.
Let's solve for T in the equation...
- T₁ = m₂aᵧ + m₂g
- T₁ = m₂(a + g)
We'll come back to this equation later. Now let's go to the free body diagram for crate #1.
We want to solve for the forces in the x-direction now. Let's set the leftwards direction to be positive and the rightwards direction to be negative.
The normal force is equal to the x-component of the force of gravity.
- (F_n · μ_k) - m₁g sinΘ = m₁aₓ
- (F_g cosΘ · μ_k) - m₁g sinΘ = m₁aₓ
- [m₁g cos(30) · 0.28] - [m₁g sin(30)] = m₁aₓ
- [(6)(9.8)cos(30) · 0.28] - [(6)(9.8)sin(30)] = (6)aₓ
- [2.539595871] - [-58.0962595] = 6aₓ
- 60.63585537 = 6aₓ
- aₓ = 10.1059759 m/s²
Now let's go back to this equation:
We have 3 known variables and we can solve for the tension force.
- T = 2(10.1059759 + 9.8)
- T = 2(19.9059759)
- T = 39.8119518 N
The tension force is the same throughout the string, therefore, the tension in the string connecting M2 and M3 is 39.81 N.