Answer:
The minimum possible coefficient of static friction between the tires and the ground is 0.64.
Explanation:
if the μ is the coefficient of static friction and R is radius of the curve and v is the speed of the car then, one thing we know is that along the curve, the frictional force, f will be equal to the centripedal force, Fc and this relation is :
Fc = f
m×(v^2)/(R) = μ×m×g
(v^2)/(R) = g×μ
μ = (v^2)/(R×g)
= ((25)^2)/((100)×(9.8))
= 0.64
Therefore, the minimum possible coefficient of static friction between the tires and the ground is 0.64.
The question is incomplete.
The distance between the Moon and Earth influences: 1) the attractive gravitational force between them, 2) the tides, 3) the eclipses, 4) the period of each full turn of the moon around the Earth.
Assuming the question refers to the gravitational attraction, we must use the fact that, as per, Newton's Universal Gravitaional Law, the attractive force between the two bodies is inversely related to the square distance that separates them.
Then, if the Moon were twice as far, the gravitational pull would be one fourth (1/4) of actual pull.
Answer:
gamma rays, ultraviolet, infrared, radio
Explanation:
Because on the Electromagnetic spectrum wavelength increases from the gamma end to radio end and frequency decrease in that order
Answer:Ultraviolet radiation has shorter wavelengths and higher energy than infrared radiation.
Explanation: Electromagnetic radiation radiations which have both electrical and magnetic properties,they can be transmitted through space or through a medium.
It includes Gamma radiation, infra-red, visible light, Ultraviolet radiation etc they occur with different wavelength, the lower the wavelength the higher the Energy dissipated per photon. According to their order of decreasing wavelength and increased energy they are classified as follows.
RADIO WAVE, MICRO WAVE, INFRA-RED, VISIBLE LIGHT, ULTRAVIOLET RAY, X-RAY, GAMMA RAYS.
Answer:
h=17357.9m
Explanation:
The atmospheric pressure is just related to the weight of an arbitrary column of gas in the atmosphere above a given area. So, if you are higher in the atmosphere less gass will be over you, which means you are bearing less gas and the pressure is less.
To calculate this, you need to use the barometric formula:

Where R is the gas constant, M the molar mass of the gas, g the acceleration of gravity, T the temperature and h the height.
Furthermore, the specific gas constant is defined by:

Therefore yo can write the barometric formula as:

at the surface of the planet (h =0) the pressure is ![P_0[\tex]. The pressure at the height requested is half of that:[tex]P=\frac{P_0}{2}](https://tex.z-dn.net/?f=P_0%5B%5Ctex%5D.%20The%20pressure%20at%20the%20height%20requested%20is%20half%20of%20that%3A%3C%2Fp%3E%3Cp%3E%5Btex%5DP%3D%5Cfrac%7BP_0%7D%7B2%7D)
applying to the previuos equation:

solving for h:
h=17357.9m