Answer:
The particles of the medium just vibrate in place.
Explanation:
As they vibrate, they pass the energy of the disturbance to the particles next to them, which pass the energy to the particles next to them, and so on. Particles of the medium don't actually travel along with the wave.
Answer:
The answer to your question is 8.74 g of He
Explanation:
Data
V = 2.4 x 10² L
P = 99 kPa
T = 0°C
mass = ?
Process
1.- Convert kPa to atm
P = 99 kPa = 99000 Pa
1 atm --------------- 101325 Pa
x --------------- 99000 Pa
x = (99000 x 1) / 101325
x = 0.977 atm
2.- Convert temperature to °K
°K = 273 + 0
°K = 273
3.- Substitution
PV = nRT
- Solve for n
n = PV / RT
n = (0.977)(2.4 x 10²) / (0.082)(273)
n = 24.48 / 22.386
n = 1.093 moles
4.- Calculate the grams of He
8 g -------------------- 1 mol
x -------------------- 1.093 moles
x = (1.093 x 8) / 1
x = 8.74 g
Answer : The Bronsted-Lowry theory was not against the Arrhenius theory, rather it was just a modification to the previous theory of acids and bases. Hydroxide ions are considered as bases because they have the tendency to accept hydrogen ions from acids and form water.
An acid was the one which produces hydrogen ions in solution because it reacts with the water molecules by giving a proton to them.
In a nutshell, he described bases as hydrogen acceptor and acids as hydrogen donors.
Answer:
Reduction
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
In given reaction fluorine gas gain two electron and form fluoride ions.
F₂(g) + 2e⁻ → 2F⁻(aq)
The given reaction is reduction because oxidation state is decreased from zero to -1.