Aluminum hydroxide
can behave as a base and neutralize sulfuric acid
as in the following equation:
(Balanced)
(a)
. Thus the ratio between the number of moles of the two reactants available:
![n(\text{Al}(\text{OH})_3, \text{supplied}) / n(\text{H}_2\text{SO}_4, \text{supplied})\\= [m(\text{Al}(\text{OH})_3)/ M(\text{Al}(\text{OH})_3)] / [n(\text{H}_2\text{SO}_4) / M(\text{H}_2\text{SO}_4)]\\= [23.7 / (26.98 + 3 \times(16.00 + 1.008))]/[29.5 / (2 \times 1.008 + 32.07 + 4 \times 16.00)]\\\approx 1.01](https://tex.z-dn.net/?f=n%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%2C%20%5Ctext%7Bsupplied%7D%29%20%2F%20n%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%2C%20%5Ctext%7Bsupplied%7D%29%5C%5C%3D%20%5Bm%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%29%2F%20M%28%5Ctext%7BAl%7D%28%5Ctext%7BOH%7D%29_3%29%5D%20%2F%20%5Bn%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%29%20%2F%20M%28%5Ctext%7BH%7D_2%5Ctext%7BSO%7D_4%29%5D%5C%5C%3D%20%5B23.7%20%2F%20%2826.98%20%2B%203%20%5Ctimes%2816.00%20%2B%201.008%29%29%5D%2F%5B29.5%20%2F%20%282%20%5Ctimes%201.008%20%2B%2032.07%20%2B%204%20%5Ctimes%2016.00%29%5D%5C%5C%5Capprox%201.01)
The value of this ratio required to lead to a complete reaction is derived from coefficients found in the balanced equation:

The ratio for the complete reaction is smaller than that of the reactants available, indicating that the species represented on the numerator,
, is in excess while the one on the denominator,
, serves as the limiting reagent.
(b)
The quantity of water produced is dependent on the amount of limiting reactants available.
of sulfuric acid is supplied in this reaction as the limiting reagent.
moles of water molecules are produced for every
moles of sulfuric acid consumed. The reaction would thus give rise to
of water molecules, which have a mass of
.
(c)

(d)
The quantity of
, the reactant in excess, is dependent on the number of moles of this species consumed in the reaction and thus the quantity of the limiting reagent available. The consumption of every
moles of sulfuric acid, the limiting reagent, removes
moles of aluminum hydroxide
from the solution.
of sulfuric acid is initially available as previously stated such that
, or
, of
would be eventually consumed.
of
would thus be in excess by the end of the reaction process.
The angular
momentum quantum number determine the
<span>the energy of the electron on the outer shell
the possible number of electrons on particular orbital
the shape of the orbital
the orientation of the orbital</span>
ΔG > 0
is always true for the freezing of water.
Explanation:
- The freezing of water is only spontaneous when the temperature is fairly small. Over 273 K, the higher value of TΔS causes the sign of ΔG to be positive, and there is no freezing point.
- The entropy decreases as water freezes. This does not infringe the Thermodynamics second law. The second law doesn't suggest entropy will never diminish anywhere.
- Entropy will decline elsewhere, provided it increases by at least as much elsewhere.
Answer:
C.
Explanation:
Butane (C4H10) has 3 C-C bonds in the carbon chain and 10 C-H bonds
Answer: The coefficients are 2, 2 and 1.
Explanation: According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants.
The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
The balanced chemical equation for the given reaction is:
2H2o➡️2h2+o2