Answer:They are movement, nutrition, respiration, sensitivity, reproduction, excretion,and growth.
Explanation:
Answer:12 mol
Explanation: both vessels are at the same temp and pressure (and the pressure is low and/or the temperature high).
6.7mol per 1.3L = 6.7/1.3 mol/L
so in 2.33L = 6.7*2.33/1.3 = 12 mol
In 1 molecule of the compound C₆H₁₂O₂ there are 12 moles of hydrogen atoms
<h3>Further explanation</h3>
Given
C₆H₁₂O₂ compound
Required
moles of Hydrogen
Solution
In a compound, there is a mole ratio of the constituent elements.
The empirical formula is the smallest comparison of atoms of compound forming elements.
A molecular formula is a formula that shows the number of atomic elements that make up a compound.
In the C₆H₁₂O₂ compound, there are 3 forming elements: C, H and O
The number of each element is indicated by its subscript
C: 6 moles
H = 12 moles
O = 2 moles
Answer:

Explanation:
25. Boyle's Law
The temperature and amount of gas are constant, so we can use Boyle’s Law.

Data:

Calculations:

26. Ideal Gas Law
We have p, V and n, so we can use the Ideal Gas Law to calculate the volume.
pV = nRT
Data:
p = 101.3 kPa
V = 20 L
n = 5 mol
R = 8.314 kPa·L·K⁻¹mol⁻¹
Calculation:
101.3 × 20 = 5 × 8.314 × T
2026 = 41.57T

Explanation:
As you move across the periodic table, the number of protons and neutrons increases but the number of orbital levels of the period remains the same. The atomic radii therefore decrease, across the period, because the increase in proton number causes an increased pull of the orbital electrons bringing them closer to the nucleus.
As you move down a group in a periodic table, the number of orbital levels increase. The effective nuclear charge of the nucleus of the atoms decreases due to the increased number of orbital levels that shield the valence electrons from the attractive force nucleus.