Answer:
7.86 g/cm³
Explanation:
11.0 kg = 11,000 g
The density in g/cm³ is ...
(11,000 g)/(1,400 cm³) = 7.86 g/cm³
The phrase which best describes nuclear fusion is: A. the process by which small nuclei combine into a larger nucleus.
A nuclear reaction can be defined as a type of chemical reaction in which the nucleus of an atom of a radioactive chemical element is transformed by either being joined (fusion) or split (fission) with the nucleus of another atom of a radioactive chemical element and accompanied by a release of energy.
Generally, there are two (2) main types of nuclear reaction and these include:
- <u>Nuclear fission:</u> it involves the collision of a heavy atomic nucleus with a neutron, thereby causing a split and release of energy.
- <u>Nuclear fusion:</u> it involves the joining of two smaller nuclei of atoms to form a single massive or heavier (larger) nucleus with the release of energy.
In conclusion, nuclear fusion is best described as the process by which small nuclei combine into a larger nucleus, accompanied by a release of energy.
Read more: brainly.com/question/24040465
Answer:
True
Explanation:
If a question cannot be tested and observed, it cannot simply be answered by science.
Science works with observable and testable ideas and not on metaphysics.
- Science presents a methodical approach into investigating phenomenon and answering likely questions in a logical manner.
- The body of facts and data gathered through observations and tests are used to ramify the conclusion of a scientific study.
- Without such, it is impossible to do the work of science.
Answer:
-Warm air sinks, creating an area of low pressure.
Explanation:
Heat will weigh more, than cool air!
Answer
A. It changes the rate, R
Explanation
When we change the concentration of the reactants in a chemical reaction, it affects the rate of reaction that happens in the process. Typically, the rate of reaction will decrease with time if the concentration of the reactants decreases because the reactants will be converted to products. Similarly, the rate of reaction will increase when the concentration of reactants are increased.