Answer:
In the nucleus
Explanation:
You find it in the nucleus. This is where protons and neutrons are. Don't forget the quarks as well ;)
Answer:
The magnitude of the resultant of the magnetic field is 
Explanation:
Given that,
Current = 40 A
Magnetic field 
Distance = 22 cm
We need to calculate the magnetic field
Using formula of magnetic field

Where, r = distance
I = current
Put the value into the formula


We need to calculate the magnitude of the resultant of the magnetic field
Using formula of resultant

Put the value into the formula


Hence, The magnitude of the resultant of the magnetic field is 
Answer:
B) Gets smaller
Explanation:
The difference of phase between current and voltage in a AC circuit is the phase angle and it depends on the value of Z ( circuit impedance)
Z = R + X where R is the resistive component and X the reactance component, which is due either to a presence of an inductor or a capacitor. In any case the total impedance depends on R the resistive, and the phase angle φ is:
tan⁻¹ φ = X/R
Have a look to a pure capactive circuit (we are talking about AC current) in this case current leads voltage by 90⁰. If we add a resistor in the circuit the current still will lead a voltage but in this condition the phase angle will be smaller,
If R increase, X/R decrease and tan⁻¹ φ also decrease
As AL2006 correctly pointed out the formula is 1/2 kx^2. I was thinking of force and work is the integral of force over the distance applied. So now

and