To find the surface area of a single cube we first nees to take the cube root of 8cm3 which is 2.
Now we know that the length of each side is 2 and we can find the area of one side by doing 2x2 which is 4.
To find the total surface area of one cube we do 4 times 6 side giving us a total of 24cm2.
To find the total surface area of the 8 individual cubes, we multiply 24cm2 by 8 to give us a total of 192cm2.
Now to find the total surface area of the one large cube, we know that each side of one of the small cubes is 4cm2 and the large cube is set up so that there are two levels of four cubes right on top of each other. So, the total area of each side of the large cube is 4cm2 times 4 which gives us 16cm2.
Then we multiply 16cm2 by 6 sides to give us a total surface area of 96cm2.
The ratio of the surface area of the single large cube comapred to the total surface area of the single cubes is 96:192
We can further simplify this ratio:
96:192
48:96
24:48
12:24
6:12
3:6
1:2
To solve the exercise it is necessary to keep in mind the concepts about the ideal gas equation and the volume in the cube.
However, for this case the Boyle equation will not be used, but the one that corresponds to the Boltzmann equation for ideal gas, in this way it is understood that

Where,
N = Number of molecules
k = Boltzmann constant
V = Volume
T = Temperature
P = Pressure
Our values are given as,




Rearrange the equation to find V we have,



We know that length of a cube is given by

Therefore the Length would be given as,



Therefore each length of the cube is 3.44nm


<u />



It takes 20347.4098071s for light from the sun to reach Pluto.
The 6.1*10^9 is replaced by 6.1*10^12 on line 4 because we convert the distance from km to m.
c = speed of light. If a different value was given in the previous question then use that instead of the value I used to do the final calculation.
Answer:
V = 576 V
Explanation:
Given:
- The area of the two plates A = 0.070 m^2
- The space between the two plates d = 6.3 mm
- Te energy density u = 0.037 J /m^3
Find:
- What must the potential difference between the plates V?
Solution:
- The energy density of the capacitor with capacitance C and potential difference V is given as:
u = 0.5*ε*E^2
- Where the Electric field strength E between capacitor plates is given by:
E = V / d
Hence,
u = 0.5*ε*(V/d)^2
Where, ε = 8.854 * 10^-12
V^2 = 2*u*d^2 / ε
V = d*sqrt ( 2*u / ε )
Plug in values:
V = 0.0063*sqrt ( 2 * 0.037 / (8.854 * 10^-12) )
V = 576 V