Answer:
1,3,5
Explanation:
i think maybe dont come at me
B. Amplitude
It is the maximum distance from the equilibrium point of the pendulum.
Answer:
I believe its a and c but my notes are all kinds of messed up so im sorry if its wrong
Explanation:
Answer: In this lab we wanted to know how motion can be described. So the hypothesis is if the starting height of a sloped racetrack is increased, then the speed at which a toy car travels along the track will increase because the toy car will have a greater acceleration. My prediction is that cars travel faster on higher tracts. So the heighten the track was intentionally manipulated. So it is the independent variable the speed of the car is the dependent variable. The speed at the first quarter checkpoint is 1.09 m/s. The speed at the second quarter checkpoint is 1.95 m/s. The speed at the third quarter checkpoint is 2.373.36 m/s. The speed at the finish line is 2.803.00 m/s. The average speed increases as the height increases.
The cars on the higher track travel farther than the cars on the lower track, in the same time.
This means that the cars on the higher track have a greater average speed than those on the lower track. This is demonstrated by the
slope of the higher track line being greater than the slope of the lower track line.
Explanation: put it in notes then send it to files to compress it to submit it.
Answer:
moment of inertia is 2.72 kg m²
Explanation:
given data
mass m = 10kg
height h = 4.5 m
radius r = 0.5 m
speed v = 6.5 m/s
to find out
moment of inertia
solution
we apply here conservation of energy
that is
mgh = 1/2 ×mv² + 1/2 × Iω²
here I is moment of inertia we find and
we know ω = Velocity / radius = 6.5 / 0.5 = 13
and g = 9.8
so put here all these value
10 (9.8) 4.5 = 1/2 ×(10)(6.5)² + 1/2 × I(13)²
441 = 211.25 + 1/2 × I( 169 )
I = 2.72
so moment of inertia is 2.72 kg m²