Answer:
5773.50269 Hz
23 A
Explanation:
= Inductance = 6 mH
= Capacitance = 5 μF
= Resistance = 3 Ω
= Maximum emf = 69 V
Resonant angular frequency is given by
The resonant angular frequency is 5773.50269 Hz
Current is given by
The current amplitude at the resonant angular frequency is 23 A
Answer:
the branch of mechanics concerned with the interaction of electric currents with magnetic fields or with other electric currents.
Explanation:
Answer:
Height reached will be 28.35 m
Explanation:
Here we can use the work energy theorem to find the maximum height
As we know by work energy theorem
Work done by gravity + work done by friction = change in kinetic energy
now we will have
so here the height raised by the stone will be 28.35 m from the ground after projection in upward direction
Answer:
<em>The distance is 35 m and the magnitude of the displacement is 26.93 m</em>
Explanation:
<u>Displacement and Distance</u>
These are two related concepts. A moving object constantly travels for some distance at defined periods of time. The total distance is the sum of each individual distance the object traveled. It can be written as:
dtotal=d1+d2+d3+...+dn
This sum is calculated independently of the direction the object moves.
The displacement only takes into consideration the initial and final positions of the object. The displacement, unlike distance, is a vectorial magnitude and can even have magnitude zero if the object starts and ends the movement at the same point.
Taylor walks 25 m north and 10 m west. The total distance is the sum of both numbers:
d = 25 m + 10 m = 35 m
To calculate the displacement, we need to know the final position with respect to the initial position. If we set the coordinates of Taylor's car as the origin (0,0), then his final position is (-10,25), assuming the west direction is negative and the north direction is positive.
The magnitude of the displacement is the distance from (0,0) to (-10,25):
D = 26.93 m
The distance is 35 m and the magnitude of the displacement is 26.93 m
Answer:
The resistance is found to be 6Ω
The current is found to be 0.66 A
Explanation:
The resistance of a conductor in terms of its dimensions is given as:
R = ρL/A
where,
R = resistance = ?
ρ = resistivity = 3 x 10⁴ Ω.m
L = Length = 4 mm = 0.004 m
A = Cross-sectional area = 0.2 mm² = 0.2 x 10⁻⁶ m²
Therefore,
R = (3 x 10⁴ Ω.m)(0.004 m)/(0.2 x 10⁻⁶ m²)
<u>R = 6 Ω</u>
Now, the potential difference between both ends of the resistor is:
ΔV = 16 V - 12 V = 4 V
Now, from Ohm's Law:
V = IR
I = V/R
I = 4 V/ 6 Ω
<u>I = 0.66 A</u>