Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:

Answer: C Plane
Explanation: According to Newton's law, gravitational force is proportional to the product of masses and inversely proportional to the square of distance between them.
Gravitational force depends on mass. The bigger the mass, the more the magnitude of the gravitational force. Since plane is assume to have the highest mass in the options, we can therefore conclude that plane will experience the highest gravitational force.
Go and click to the invitation bar and you can find an option written as " search friends " . Then it's easy to find that unknown user if you're pretty fond with his/her username and DP ( display picture ).
Answer:
g = 11.2 m/s²
Explanation:
First, we will calculate the time period of the pendulum:

where,
T = Time period = ?
t = time taken = 135 s
n = no. of swings in given time = 98
Therefore,

T = 1.38 s
Now, we utilize the second formula for the time period of the simple pendulum, given as follows:

where,
l = length of pendulum = 54 cm = 0.54 m
g = acceleration due to gravity on the planet = ?
Therefore,

<u>g = 11.2 m/s²</u>