1. 0.16 N
The weight of a man on the surface of asteroid is equal to the gravitational force exerted on the man:
where
G is the gravitational constant
is the mass of the asteroid
m = 100 kg is the mass of the man
r = 2.0 km = 2000 m is the distance of the man from the centre of the asteroid
Substituting, we find
2. 1.7 m/s
In order to stay in orbit just above the surface of the asteroid (so, at a distance r=2000 m from its centre), the gravitational force must be equal to the centripetal force
where v is the minimum speed required to stay in orbit.
Re-arranging the equation and solving for v, we find:
ANSWER: d) 8
EXPLANATION: Two sets of two shared electrons (4 electrons total shared) = one set of a double covalent bond.
Therefore, 8 electrons total shared = two sets of double covalent bonds
Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:
Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:
Where θ is the angular displacement and t is the time. Solving for t:
The angular displacement is θ=14°. Converting to radians:
The angular speed is w=1436 rev/min. Converting to rad/s:
Thus the time is:
t = 0.0016 s
Thus the speed of the bullet is:
v = 381 m/s
The first part of the question is:
Two point charges are placed on the x axis. (Attached file)The first charge, q1 = 8.00 nC , is placed a distance 16.0 m from the origin along the positive x axis; the second charge, q2 = 6.00 nC , is placed a distance 9.00 m from the origin along the negative x axis.
Answer:
q3 = +0.3nc
Explanation:
Due to the vector symbols in the solution, I've decided to attach the explanation to this answer.
Answer:
Conductors- copper, aluminum, gold, and silver.
Insulators- glass, air, plastic, rubber, and wood.
Explanation: