Answer:
As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. ... Thus, entropy measurement is a way of distinguishing the past from the future.
Explanation:
Answer:
If the wind is offshore (blowing away from the dock), one should carefully approach the dock at a 20 to 30 degree angle. A bow line is then passed ashore and secured. In boats having an outboard, or inboard/outboard engine, the engine is turned towards the dock and put in reverse. This invariably will bring the stern into the dock.
(a) The acceleration of the salt shaker is 1.18 m/s².
(b) The distance traveled by the baseball player before coming to rest is 204.1 m.
<h3>
Acceleration of the salt shaker</h3>
The acceleration of the salt shaker at the given coefficient of kinetic friction is determined as follows;
a = μg
a = 0.12 x 9.8
a = 1.18 m/s²
Acceleration of the baseball player is calculated as follows;
a = μg
a = 0.4 x 9.8
a = 3.92 m/s²
<h3>Distance traveled by the baseball player</h3>
The distance traveled by the baseball player before coming to rest is calculated as follows;
v² = u² - 2as
0 = 40² - 2(3.92)s
0 = 1600 - 7.84s
7.84s = 1600
s = 204.1 m
The complete question is below:
A baseball player slides into third base with an initial speed of 40 m/s. If the coefficient of kinetic friction between the player and the ground is 0.40, how far does the player slide before coming to rest?
Learn more about coefficient of friction here: brainly.com/question/20241845
2.496 HZ is the resistance change the resonant frequency.
Given, Supply frequency, f = 60 12
number of poles, P = 4
Full load speed, Ne= 1725 rpm
Synchronous speed; No= 1201= 120X60 = 1800 rpm
P
4
We know the formula for Full load-speed
Ne = N's (1 - Sf)
where se = full load rotor ship
Ne = 1 - SP
SQ = 1- Ne = 1- 1725 = 0.0416 DY 4-16%
1800
SQ= 4. 16 % or 0.0416
Frequency of rotor, fy= Sgif = (0.0416) ( 60 ) = 2.496 Hz
fr = 2.496 HZ
Learn more about Frequency here: brainly.com/question/16148316
#SPJ4
Answer:
alpha=53.56rad/s
a=5784rad/s^2
Explanation:
First of all, we have to compute the time in which point D has a velocity of v=23ft/s (v0=0ft/s)

Now, we can calculate the angular acceleration (w0=0rad/s)


with this value we can compute the angular velocity

and the tangential velocity of point B, and then the acceleration of point B:

hope this helps!!