Answer:
Fault-block mountain
In geography, fault-block mountains arise when the Earth's crust pulls apart and divides. Some parts of the Earth are pushed upwards whereas the other moves downward forming a divergent boundary. In geological studies, a divergent boundary can be described as a linear feature which arises due to plate tectonics which are being pulled apart from each other. Hence, fault-block mountains are most likely to be seen in a divergent boundary.
Most active divergent plate boundaries occur between oceanic plates and exist as mid-oceanic ridges. Divergent boundaries also form volcanic islands, which occur when the plates move apart to produce gaps that molten lava rises to fill.
Answer:
Question: What Is The Correct IUPAC Name For S2F8? X ( ( (I) (IV) Di- Mono- Penta- Tetra- Tri- Hepta- Octa- Hexa- Fluorine Selenide Flourate Sulfide Sodium Sulfate Sulfur Fluoride Hydrate Acid.
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
<u>Answer:</u>
The correct answer option is a) collisions between the particles and surrounding molecules.
<u>Explanation:</u>
The collisions between the particles and surrounding molecules causes the Brownian motion of particles in a colloid.
Brownian motion is the irregular movement of the microscopic particles in a fluid which bombard into each other.
It basically is the result of the molecules of a dispersion medium colliding with the dispersed particles of the phase.
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.