Answer:
Catalysts allow chemical reactions to occur at temperatures at which the organism lives.
Explanation:
Catalysts are molecules that speeden the rate of chemical reaction by lowering the activation energy of the reaction. In a living system, the catalyst are ENZYMES, which help to hasten up many biochemical reactions.
Another function of catalyst in living systems is that it allows chemical reactions to occur at temperatures at which the organism lives.
PH of a solution will be <span>higher than 7
</span>
Ammonium cyanide is a salt formed by hydrogen cyanide and ammonia. Ammonia is a weak base and hydrogen cyanide is a weak acid.
NH₄CN + H₂O ⇒ NH₃ + HCN
NH₄⁺ + H₂O -----> H₃O⁺ + NH₃
CN⁻ + H₂O -----> HCN + OH⁻
Although both compounds are weak electrolytes, NH₃ is somewhat stronger base than HCN is a strong acid, so the solution reacts alkaline. We can prove this using Ka and Kb values:
Ka(HCN) = 4.9 x × 10⁻¹⁰
Kb(NH₃) = 1.8 × 10⁻⁵<span>
Kw= </span>1.0 × 10⁻¹⁴
Let's first calculate Ka for NH₄⁺:
Ka(NH₄⁺) x Kb(NH₃<span>) = pKw
</span>Ka(NH₄⁺) = Kw/Kb(NH₃) = 5.6 x 10⁻¹⁰
Then, Kb for CN⁻:
Kb(CN⁻) x Ka(HCN) = pKw
Kb(CN⁻) = Kw/Ka(HCN) = 2 x 10⁻⁵
From this, we can see that the acid constant NH4⁺ is much lower than the base constant of CN⁻, which will say that the solution of NH₄CN will react slightly alkaline because of the higher presence of hydroxyl ions in solution.
The change in internal energy of the combustion of biphenyl in Kj is calculated as follows
=heat capacity of bomb calorimeter x delta T where delta T is change in temperature
delta T = 29.4 -25.8= 3.6 c
= 5.86 kj/c x 3.6 c = 21.096 kj