<u>The Concept:</u>
We are given the density of a sample of the metal = 11.4 grams / cm³
and we need to find the volume occupied by a sample of 30.5 grams
For this solution, we will use dimensional analysis
from the given information, we can also say that the density of the metal is:
1 cm³ / 11.4 grams
If we multiply this value by 30.5 grams, the 'grams' in the numerator and the denominator will cancel out and we will be left with the volume occupied by 30.5 grams of the metal
<u>Solving for the volume:</u>
X 30.5 grams = (30.5 / 11.4) cm³
Volume of 30.5 grams of the sample = 2.68 cm³
Answer:
270 Joules
Explanation:
The specific heat capacity equation will be used for this question i.e.
Q = m. c. ΔT
Where; Q = Amount of heat
m = mass of substance
C = specific heat capacity of
substance
ΔT = change in temperature
(Final temp - initial temp)
However, for this unknown metal, we need to find the specific heat first by saying; C = Q / mΔT
Q= 135J, C=?, m= 10g, ΔT = (40-25 = 15°C)
C = 135 / 15 × 10
C = 135/150
C = 0.9 J/g°C
If the specific heat capacity of the unknown metal is 0.9 J/g°C, then at a mass of 20.0g, and a ΔT of 15°C, the amount of heat needed is:
Q = m. c. ΔT
Q = 20 × 0.9 × (40-25)
Q = 18 × 15
Q = 270J
270 Joules of heat is needed to increase the temperature of 20g of the metal from 25 - 40°C
Answer:
Filled below
Explanation:
#v.e means number of valence electrons.
Also, the column total v.e is gotten by adding the v.e of the metal to the v.e of the non metal based on the chemical formula of both of the 2 elements combined.
K: Cl: 5; KCl; 1 + 5 = 6
Be: S: 6; BeS; 2 + 6 = 8
Na: F: 7; NaF; 1 + 7 = 8
Mg: Se: MgSe; 2 + 6 = 8
Al; N; AlN; 1 + 5 = 6
Be; F; BeF2; 2 + 2(7) = 16
Mg; N; Mg3N2; 3(2) + 2(7) = 20
An acid is an ionic compound that produces positive hydrogen ions when dissolved in water. Acids taste sour and turn blue litmus paper red. A base is an ionic compound that produces negative hydroxide ions when dissolved in water. Bases taste bitter and turn red litmus paper blue.
Answer:
The nucleus is a collection of particles called protons, which are positively charged, and neutrons, which are electrically neutral. Protons and neutrons are in turn made up of particles called quarks. The chemical element of an atom is determined by the number of protons, or the atomic number, Z, of the nucleus.