When you double capacitance and inductance, the new resonance frequency becomes f/2.
The resonance frequency of RLC series circuit, is the frequency at which the capacity reactance is equal to inductive reactance.
It can also be defined as the natural frequency of an object where it tends to vibrate at a higher amplitude.
Xc = Xl
which gives the value for resonance frequency:

where;
f is the resonance frequency
L is the inductance
C is the capacitance
When you double capacitance and inductance, the new resonance frequency becomes;




Thus from above,
When you double capacitance and inductance, the new resonance frequency becomes f/2.
Learn more about resonance frequency here:
<u>brainly.com/question/13040523</u>
#SPJ4
The time period for guilty party was between 1900-1988.
It would be 1. B 2. A 3. A
The car’s momentum after 4.21s is 24617.4 kgm/s
<h3>
Newton's Second Law of Motion.</h3>
Newton's second law state that, the rate of change of momentum, is directly proportional to the applied force.
Given that a 1200 kg car passes traffic light at a velocity of 10.2 m/s to the north and accelerates at a rate of 2.45 m/s^2. To calculate the car’s momentum after 4.21 s, Let us first list all the parameters involved.
- Acceleration a = 2.45 m/s²
From Newton's second law,
F = (mv - mu) / t
ma = (mv - mu) / t
Substitute all the parameters into the formula above.
1200 × 2.45 = ( mv - 1200 × 10.2 ) / 4.21
2940 = ( mv - 12240 ) / 4.21
Cross multiply
12377.4 = mv - 12240
Make mv the subject of the formula
mv = 12377.4 + 12240
mv = 24617.4 kgm/s
Therefore, the car’s momentum after 4.21s is 24617.4 kgm/s
Learn more about Momentum here: brainly.com/question/25121535
#SPJ1
Use the velocity formula
final velocity=intitial velocity+(acceleration x time)
plug the numbers into the equation
12=8+(a x 4)
a x 4=4
acceleration = 1 meter per second
Hope this helps.