They all have segmented limbs, a hard exoskeleton, a pair of antennae and a segmented body.
Answer:
Rate = vmax k3/k2+k3
Explanation:
The rate of reaction when the enzyme is saturated with substrate is the maximum rate of reaction, is referred to as Vmax.
This is usually expressed as the Km ie. Michaelis constant of the enzyme, an inverse measure of affinity. For practical purposes, Km is the concentration of substrate which permits the enzyme to achieve half Vmax.
Please kindly check attachment for the step by step solution of the given problem.
Answer:
Explanation:
The radius of the smaller bubble, r1 will decrease and that of the bigger bubble, r2 will increase.
The pressure that is present in the smaller bubble usually is greater than the pressure that exists inside that of the bigger bubble. This then makes air to flow from r1 to r2 thereby making the radius of the smaller bubble r1, to decrease while keeping that of the bigger bubble r2 higher.
The movement of the object is considered to be kinetic energy while the object getting warmer indicates that there is thermal (heat) energy formed.
Based on this, as the object slides across the floor, friction slows down this motion and the object becomes warmer as kinetic energy is converted into thermal energy.
Answer:
N₂ / N₁ = 13.3
Explanation:
A transformer is a system that induces a voltage in the secondary due to the variation of voltage in the primary, the ratio of voltages is determined by the expression
ΔV₂ = N₂ /N₁ ΔV₁
where ΔV₂ and ΔV₁ are the voltage in the secondary and primary respectively and N is the number of windings on each side.
In this case, they indicate that the primary voltage is 9.0 V and the secondary voltage is 120 V
therefore we calculate the winding ratio
ΔV₂ /ΔV₁ = N₂ / N₁
N₂ / N₁ = 120/9
N₂ / N₁ = 13.3
s good clarify that in transformers the voltage must be alternating (AC)