1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
11

Q) Considering the value of ideal gas constant in S.I. unit, find the volume of 35g O2 at 27°C and 72

Physics
1 answer:
djverab [1.8K]3 years ago
5 0

Answer:

V = 0.0283 m³ = 28300 cm³

T₂ = 1200 K

Explanation:

The volume of the gas can be determined by using General Gas Equation:

PV = nRT

where,

P = Pressure of Gas = (72 cm of Hg)(1333.2239 Pa/cm of Hg) = 95992.12 Pa

V = Volume of Gas = ?

n = no. of moles = mass/molar mass = (35 g)/(32 g/mol) = 1.09 mol

R = General Gas Constant = 8.314 J/ mol.k

T = Temperature of Gas = 27°C + 273 = 300 k

Therefore,

(95992.12 Pa)(V) = (1.09 mol)(8.314 J/mol.k)(300 k)

V = 2718.678 J/95992.12 Pa

<u>V = 0.0283 m³ = 28300 cm³</u>

<u></u>

The Kinetic Energy of gas molecule is given as:

K.E = (3/2)(KT)

Also,

K.E = (1/2)(mv²)

Comparing both equations, we get:

(3/2)(KT) = (1/2)(mv²)

v² = 3KT/m

v = √(3KT/m)

where,

v = r.m.s velocity

K = Boltzamn Constant

T = Absolute Temperature

m = mass of gas molecule

At T₁ = 300 K, v = v₁

v₁ = √(3K*300/m)

v₁ = √(900 K/m)

Now, for v₂ = 2v₁ (double r.m.s velocity), T₂ = ?

v₂ = 2v₁ = √(3KT₂/m)

using value of v₁:

2√(900 K/m) = √(3KT₂/m)

4(900) = 3 T₂

<u>T₂ = 1200 K</u>

You might be interested in
A girl pulls on a 10-kg wagon with a constant horizontal force of 30 n. if there are no other horizontal forces, what is the wag
olga2289 [7]
Force = mass * acceleration
F = ma

Given m = 10 kg, F = 30 N;

F = ma
30 = 10a

Solving for a:
a = 3 m/s^2

The acceleration is 3 meters per second squared.
8 0
4 years ago
A weather balloon is partially inflated with helium gas to a volume of 2.0 m³. The pressure was measured at 101 kPa and the temp
Yanka [14]

Answer:

4.7 m³

Explanation:

We'll use the gas law P1 • V1 / T1 = P2 • V2 / T2

* Givens :

P1 = 101 kPa , V1 = 2 m³ , T1 = 300.15 K , P2 = 40 kPa , T2 = 283.15 K

( We must always convert the temperature unit to Kelvin "K")

* What we want to find :

V2 = ?

* Solution :

101 × 2 / 300.15 = 40 × V2 / 283.15

V2 × 40 / 283.15 ≈ 0.67

V2 = 0.67 × 283.15 / 40

V2 ≈ 4.7 m³

7 0
2 years ago
As you learned in Part B, a non-burning helium core surrounded by a shell of hydrogen-burning gas characterizes the subgiant sta
Gennadij [26K]

Answer:

E- The star becomes a red giant (LATEST STAGE)

F- The surface of the star becomes brighter and cooler

C- Pressure from the star's hydrogen-burning shell causes the non burning envelope to expand

A- The shell of hydrogen surrounding the star's nonburning helium core ignites.

D- The star's non burning helium core starts to contract and heat up

B- Pressure in the star's core decreases (EARLIEST STAGE)

(A star moves away from the main sequence once its core runs out of hydrogen to fuse into helium. The energy once supplied by hydrogen burning reduces and the core starts to compress under the force of gravity. This contraction allows the core and surrounding layers to heat up. Finally, the hydrogen shell around the core becomes hot enough to ignite hydrogen burning.

6 0
3 years ago
it takes 90 j of work to stretch a spring 0.2 m from its equilibrium position. How muc work is needed to stretch it an additiona
Vinvika [58]

Work needed: 720 J

Explanation:

The work needed to stretch a spring is equal to the elastic potential energy stored in the spring when it is stretched, which is given by

E=\frac{1}{2}kx^2

where

k is the spring constant

x is the stretching of the spring from the equilibrium position

In this problem, we have

E = 90 J (work done to stretch the spring)

x = 0.2 m (stretching)

Therefore, the spring constant is

k=\frac{2E}{x^2}=\frac{2(90)}{(0.2)^2}=4500 N/m

Now we can find what is the work done to stretch the spring by an additional 0.4 m, that means to a total displacement of

x = 0.2 + 0.4 = 0.6 m

Substituting,

E'=\frac{1}{2}kx^2=\frac{1}{2}(4500)(0.6)^2=810 J

Therefore, the additional work needed is

\Delta E=E'-E=810-90=720 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

7 0
3 years ago
Electromagnet Fluctation
Tems11 [23]

Answer:

answer choice B

Explanation:

6 0
3 years ago
Other questions:
  • 013 Indianapolis 500 champion Tony Kanaan holds his hand out of his IndyCar while driving through still air with standard atmosp
    11·1 answer
  • What do civic heroes contribute to their society?
    8·1 answer
  • You and two of your friends go to the movies. Each ticket cost $7.50. You share the cost of the popcorn. If each person pays $9.
    8·2 answers
  • What are groups 1,2 and 3 examples of on the periodic table
    15·1 answer
  • Galileo’s most important contribution to astronomy was his
    15·2 answers
  • Find the frequency of a spring block system if it is doing 4 oscillation in 100s
    7·1 answer
  • ..Psychology Help Please!
    9·1 answer
  • Please help!! giving a lot of points
    11·1 answer
  • When you walk across the ground and push on it with your feet...
    7·2 answers
  • If you push a 200 kg box with a horizontal force of 1,172 N and kinetic friction resists the motion with a force of 962 N, what
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!